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Abstract

Since diffusional creep viscosity depends strongly on the grain size, a variability in the grain size in a polycrystal can generate signif-
icant internal stresses. Upon unloading, the non-uniform internal stresses recover, leading to anelastic strains. The anelastic strains can
be very large, approaching 100 times the elastic strains. We solve the case of bimodal viscosity in closed form to highlight the features of
this type of anelasticity. The results are compared to the anelastic behavior of two-phase superplastic alloys. In such alloys the spatial
variability in the diffusional viscosity can arise from the variability in the activation energy of grain boundary diffusion, which, because of
its Arrhenius nature, can produce a much higher degree of variability than the grain size.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The time-dependent recovery of strain, generally known
as viscoelasticity [1], is called anelastic deformation in the
metals literature [2]. This special nomenclature has its ori-
gin in the specific atomistic and microstructural mecha-
nisms of anelasticity; the mechanistic modeling then
unfolds into a prediction for the magnitude and the time
constant for strain recovery. Examples include the move-
ment of carbon atoms between tetrahedral and octahedral
sites in body-centered-cubic iron [3], the to-and-fro bowing
of dislocations that are pinned [4], and sliding at grain
boundaries in polycrystals that is accommodated by elastic
deformation in the neighboring grains [5]. These mecha-
nisms follow the Voigt representation as shown on the left
in Fig. 1a. Here the dashpot, gVG, represents the viscosity
for the accumulation of anelastic strain, and EVG is the
anelastic modulus. The spring Eo refers to “pure” elastic
deformation, which is time independent.

The right-hand side in Fig. 1 illustrates a different type
of anelastic behavior. Here a series of dashpots are con-
nected in parallel, each with a different viscosity. In
steady-state deformation, each dashpot deforms at the
same rate but, because of its own unique viscosity, supports
a load that is different from the others. These loads also
produce elastic deformation which is carried by the springs
that are attached in series to the dashpots. At the point of
unloading, each spring will support a different stress which
will cause a recovery of strain. The recovery will be time-
dependent since it will be controlled by the viscosity of
the dashpots. In this paper we analyze this viscoelastic
problem using linear descriptions of the viscosity and elas-
tic constants, as can be assumed for a polycrystal deform-
ing by diffusional creep. In Coble creep, the diffusional
creep viscosity is proportional to the third power of the
grain size. Therefore, a spatial variability in the grain size
can give rise to the series of spring–dashpot elements repre-
sents shown in Fig. 1b. This Maxwell model for anelasticity
assumes that the polycrystal can be divided into columns of
regions each with its own grain size, as if in a one-dimen-
sional composite. In spite of this simplification we are able

1359-6454/$36.00 � 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.actamat.2009.09.049

* Corresponding author.
E-mail address: rishi.raj@colorado.edu (R. Raj).

www.elsevier.com/locate/actamat

Available online at www.sciencedirect.com

Acta Materialia 58 (2010) 702–708

http://dx.doi.org/10.1016/j.actamat.2009.09.049
mailto:rishi.raj@colorado.edu


to obtain meaningful insights and results that can be com-
pared with experiment.

It is to be noted that the variability in diffusional viscos-
ity can also arise from different diffusion coefficients that
operate in a multiphase polycrystal. A two-phase material,
for example, contains at least three kinds of boundaries,
two between the like phases (AA and BB), and one between
the unlike phases (AB). Indeed the AB type boundaries
may have a very large variability among them since the seg-
regation of the chemical species is likely to vary from one
boundary structure to another, due to different heats of
segregation. These differences will affect the local activation
energy for diffusion, and since the diffusivity depends expo-
nentially on the activation energy, even a small variability
in the activation energy can lead to a spread in viscosities
that is far wider than those arising from the grain size.
(It is interesting to note that very large anelastic strains,
as described below, have been measured in two-phase
superplastic alloys.)

The most prominent studies of large anelastic strains
have been reported in two-phase superplastic alloys. Sch-
neibel and Hazzledine [6] measured anelastic recovery of
1% strain in a Sn–Pb alloy, equal to 130 times the elastic
strain. Later, Vale [7] measured an anelastic strain of
0.5% in a eutectoid Zn–Al alloy. Todd [8] has measured
anelastic strain up to 290 times the elastic strain in the same
alloy, which was separated into two regimes, the first a
short-term relaxation which yields an anelastic strain which
is similar to the measurements of Schneibel and Hazzledine
[6], and then a longer-term relaxation which accounts for
the remainder of the anelasticity. The stress dependence
of these two regimes is also different. The short-term strain
is linear in stress, meaning that the anelastic strain, when
expressed as a multiple of the elastic strain, remains con-
stant. The long-term anelastic strain, however, approached
a constant absolute value, being relatively independent of
the applied stress. The relaxation times for the short-term
and long-term strain recovery were also different, being

proportional to the square of the grain size for the short-
term strain, and the fourth power of the grain size for
the long-term strain.

These long relaxations and the large anelastic strains have
been explained by the opening and sintering of cavities [7].
However, such an interpretation was discounted by Todd
and Hazzledine [9] since the anelasticity was present in both
tension and compression experiments, and since the Pois-
son’s ratio for the anelasticity was equal to 0.5, which repre-
sents pure shear deformation at a constant volume.

It is also noteworthy that the rate of increase of the
absolute values of the anelastic strains became weaker at
higher applied stresses [8]. The present analysis can account
for this effect since at higher stress the larger grains, which
would bear a high load, would transition into plastic defor-
mation or power-law creep [10], thereby reducing the vari-
ability in the redistribution of the applied stress.

The analysis in this paper considers a bimodal distribu-
tion of the viscosity. This special case, though approximate,
can be solved in closed form. The closed-form solution per-
mits the derivation of limiting cases, when the viscosities
and the volume fractions of the two domains are very differ-
ent. Note that the variability in the viscosity can arise from
both the grain size and the diffusivity. The latter is likely to
be more important in the case of two-phase alloys.

The present approach also permits the study of time,
temperature and grain size effects in a unified way, since
they are all related to one another via the viscosity. Indeed,
the analysis can extend from nanograin materials [11], to
very large grain structures, such as of olivine in the upper
mantle [12,13], and from short-term laboratory timescales
to very long timescales, that may apply to geological
measurements.

2. Nomenclature

We consider the general case for the Maxwell model,
shown Fig. 1b. The polycrystal is assumed to consist of
n elements, such that i = 1 to n, which leads to the follow-
ing nomenclature for the parameters for each of the
elements:

ei total tensile strain of the ith partition with two
components ei,1 and e2

ei,1 is the strain from elastic deformation
ei,2 is the strain from the viscous deformation
ri tensile stress distributed to the ith partition
gi viscosity of the ith partition
vi the volume fraction of the ith partition, such thatP

i¼1;nti ¼ 1

The global parameters in the problem are as follows:

E0 Young’s modulus of the material
r1 applied tensile stress
DA the ratio of the anelastic strain to the elastic

strain

E0E0

EVG
v1 v2 vi vn

η1 η2 ηi ηn
ηVG

(a) (b)

Voigt Maxwell

Fig. 1. Voigt and Maxwell models for anelastic deformation. This paper
considers the Maxwell model.
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