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Abstract

The equilibrium phase diagram of solid Pt–Rh is calculated by means of semi-grand canonical lattice Monte Carlo simulations using
thermodynamic integration. Configurational energies are described by a refined BOS model (bond-order simulation mixing), which is
fitted to reference data obtained from first-principles calculations. The calculated equilibrium phase diagram shows the ordered face-cen-
tered cubic structure 40 and D022 structure as stable phases at low temperatures (<250 K) and has no miscibility gap at higher temper-
atures, which is in contrast to existing assumptions. The calculated short-range order parameters of the solid solution are in full
agreement with experimental values and thus confirm that the BOS model provides a sound description of configurational energies.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Pt–Rh is a technologically important metallic alloy
because of its catalytic activity in various reactions. The
widely accepted phase diagram [1–5] of Pt–Rh shows a pro-
nounced miscibility gap with a critical temperature of
1033 K. This phase diagram is based on a prediction by
Raub [6] dating back to 1959. He inferred from the exper-
imentally confirmed phase separation in Ir–Pt, Ir–Pd and
Pd–Rh that Pt–Rh would also show demixing at low tem-
peratures. The critical temperature was estimated from the
difference in the melting points of the two constituents.
Although the phase diagram has since been reprinted many
times, a miscibility gap has never been observed experimen-
tally. In contrast to Raub’s prediction, the theoretical cal-
culations by Lu et al. [7,8] based on density functional
theory (DFT) indicate that Pt–Rh has a negative enthalpy
of mixing. Lu et al. predicted that Pt–Rh is miscible even at
low temperature and identified various stable ordered
structures, including the phases D1a;D022;X2, ‘‘40” and

D1a for concentrations xPt ¼ 1
5
; 1

4
; 2

7
; 1

2
and 4

5
, respectively.

Recently, another DFT study by Curtarolo et al. [9] con-
firmed that the structures D1a;D022, ‘‘40” and D1a are
energetically the most stable configurations at zero temper-
ature. Curtarolo et al. did not identify the X2 structure, but
predicted the D022 phase to be stable for xPt ¼ 3

4
. This is in

agreement with another theoretical study treating the Pt–
Rh system on the basis of a Green’s function formalism
[10]. Again, the ‘‘40” and D022 structures were found to
be stable ground state modifications, and in addition Kolb
et al. [11] identified the structure ‘‘40” (which they named
‘‘CH”) as a stable phase.

Finally, the cluster expansion (CE) method has been
used to examine not only the ground state structures but
also the short-range order (SRO) at high temperatures
and surface segregation tendencies of Pt–Rh [12]. Once
again the 40 structure at 50% Pt and the D022 structure
at 25% Pt are found to be stable, along with three other
structures that are denominated only by their symmetry
group ðPmmn;Pmn21;PmnaÞ. The ordering temperature
of the ‘‘40” structure was found to be only about 100–
110 K. The first experimental evidence for the ordering of
Pt–Rh was provided by Steiner et al. [13], who probed
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the local order of a sample consisting of Pt–47 at.% Rh
with X-ray and neutron scattering. The Warren–Cowley
short-range order (WC-SRO) parameters were deduced
from the diffuse X-ray scattering experiments and clearly
give evidence for the existence of the structure ‘‘40”. By
applying the inverse Monte Carlo technique the order–dis-
order transition temperature of the ‘‘40” structure was esti-
mated to be 185 K. All of these studies provide evidence for
ordering tendencies in Pt–Rh. While many different struc-
tures with face-centered cubic (fcc) lattices are found in
ab initio studies, only the ‘‘40” and the D022 structure are
univocally identified as minimum energy structures by all
the theoretical papers. Most importantly, there is no evi-
dence for phase separation in solid Pt–Rh. However, there
is still no complete assessment of the equilibrium phase dia-
gram of the solid phases and it remains an open question as
to in what temperature range the ordered phases can be
expected.

This paper aims to fill this gap by calculating the equilib-
rium phase diagram from configurational free energies
obtained by thermodynamic integration of lattice Monte
Carlo simulations. In doing so a refined ‘‘bond-order sim-
ulation mixing” (BOS) model is parameterized that extends
the model previously introduced by Zhu and DePristo [14].
This lattice-based Hamiltonian very accurately reproduces
first-principles data and is fully appropriate for modelling
Pt–Rh. The model is validated by comparison to results
obtained from the cluster expansion formalism and to
experimental SRO data. Starting from the high-tempera-
ture expansion of the semi-grand canonical thermodynamic
potential, the complete free energy surface is calculated by
thermodynamic integration. Finally, the phase diagram
that incorporates the ordered structures ‘‘40” and D022 is
derived from the free energy hypersurface.

2. Method

2.1. Modified BOS mixing model

All relevant solid phases in Pt–Rh can be mapped on a
fcc sublattice. Therefore lattice-based Monte Carlo simula-
tions are an appropriate means for investigating phase sta-
bility of this alloy system at finite temperatures. While
cluster-expansion methods of total energies calculated from
first principles have become popular over recent years,
physically motivated model Hamiltonians such as the
BOS model provide an interesting alternative, since in con-
trast to the CE method they can be straightforwardly
extended for modelling surfaces of various orientations.
The BOS model was originally developed by De Pristo
et al. [14] as an advanced version of the ‘‘site energy for-
malism” model [15]. Our modifications of the model will
be described in this section. We implemented the model
for the case of a fcc lattice with coordination number
Z ¼ 12.

The total energy of a system in the BOS mixing model is
given by the sum over the site energies of all atoms

E ¼
X

i2sites

�T i
Zi
ðMiÞ: ð1Þ

The energy �T i
Zi
ðMiÞ of site i depends on the type T i of atom

i, which may be Ai or Bi, the total coordination Zi and the
number of odd neighbors Mi of type other than T i. In the
following we implicitly assume that all parameters depend
on the specific site i.

The site energies as given in the work of DePristo et al.
[14] have the following form:

�T
Z ðMÞ ¼ �T

Z þMDET
Z þ

1

2
MðM � 1ÞkT

Z : ð2Þ

In the original BOS model the energy correction terms for
sites with coordination Z are written in the following form
for a binary A–B system:

DEA
Z ¼

DEA
Z¼12 þ DEB

Z¼12

2
� �

A
Z � �B

Z

Z
; ð3Þ

DEB
Z ¼

DEA
Z¼12 þ DEB

Z¼12

2
þ �

A
Z � �B

Z

Z
: ð4Þ

However, this specific choice, which introduces an asym-
metry in binding energies, leads to undesired artefacts.
When simulating surfaces, we found that the term � �A

Z��
B
Z

Z
leads to surface segregation even in the case of a vanishing
mixing energy and in the absence of a difference in surface
energies of the two alloy constituents.

We therefore modified the linear energy correction term
by replacing the type- and coordination-dependent correc-
tion energy through a summation over the n-neighbor
shells around site i:

MDET
Z !

1

2

X4

n¼1

MnDEAB
n : ð5Þ

Moreover, the coordination dependence of parameter k is
abandoned in our modification and the nonlinear term is
evaluated over nearest neighbor positions only as in the
original model. In our modified form the site energies then
read as:

�A
ZðMnÞ ¼ �A

Z þ
1

2

X4

n¼1

MnDEAB
n þ

1

2
M1ðM1 � 1ÞkA

1 ; ð6Þ

�B
ZðMnÞ ¼ �B

Z þ
1

2

X4

n¼1

MnDEAB
n þ

1

2
M1ðM1 � 1ÞkB

1 : ð7Þ

Here, Mn is the number of odd neighbors in the nth shell.
Note that asymmetry in the site energies, i.e. nonlinearity
in M, is only assumed for nearest neighbors and is ex-
pressed in the k-parameters.

The site energies of the pure phases in �A
Z and �B

Z (see
Eqs. (6) and (7)) represent another 24 parameters
(Z ¼ 1; . . . ; 12 for nearest neighbors in a fcc lattice). These
parameters allow an accurate modelling of the dependence
of the binding energy on the total coordination Z. This
would not be possible in a simple Ising model in which
the dependence of binding energy on the coordination is
always linear. A straightforward approach for determining
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