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Abstract

Departing from the volume-averaging method, the equiaxed solidification model was extended to describe the overall solidification
kinetics of undercooled single-phase solid-solution alloys. In this model, a single grain, whose size is given assuming site saturation,
is divided into three phases, i.e. the solid dendrite, the inter-dendritic liquid and the extra-dendritic liquid. The non-equilibrium solute
diffusion in the inter-dendritic liquid and the extra-dendritic liquid, as well as the heat diffusion in the extra-dendritic liquid, is considered.
The growth kinetics of the solid/liquid interface is given by the solute or heat balance, where a maximal growth velocity criterion is
applied to determine the transition from thermal-controlled growth to solutal-controlled growth. A dendrite growth model, in which
the nonlinear liquidus and solidus, the non-equilibrium interface kinetics, and the non-equilibrium solute diffusion in liquid are consid-
ered, is applied to describe the growth kinetics of the grain envelope. On this basis, the solidification path is described.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Rapid solidification of bulk undercooled melts is gener-
ally applied to prepare metals in a metastable state and
thus gives the potential of forming novel metastable phases
and microstructures [1]. Much attention has been paid in
previous works to modeling the pattern formation (e.g.
dendrite growth [2–12]), microstructure evolution (e.g.
grain refinement mechanism [9,13–15]), etc. However, the
overall solidification kinetics, including pattern formation
and microstructure evolution, and the overall solidification
process (e.g. the thermal history upon cooling) has not, to
our knowledge, been modeled.

For near-equilibrium solidification (e.g. normal casting),
however, such a model of the overall solidification kinetics
(called as the equiaxed solidification model) has been stud-
ied extensively [16–27]. The original model was proposed
by Rappaz and Thévoz (RT) [16,17], who adopted a
micro–macroscopic approach [18] to treat the conservation

of global energy from the macroscopic scale and nucleation
and dendrite growth from the microscopic scale. In the RT
model, nucleation and growth are assumed to occur in a
spherical volume-element without mass or species exchange
between neighboring grains. A single grain is subdivided
into three phases (regions): the solid dendrite (s), the
inter-dendritic liquid (li) within and the extra-dendritic
liquid (le) outside the grain envelope, defined as a fictitious
spherical surface “stretched” by (or around) the dendrite
tip. Note that li is assumed to be uniform and its concentra-
tion is equal to that of the dendrite tip at each instant or
temperature [16]. Using the volume-averaging method
[28,29], Wang and Beckermann (WB) [19,20] proposed a
more general model, which can be applied to deal with
arbitrary geometries, back diffusion in the solid, non-uni-
form concentration in the inter-dendritic liquid, etc. Fol-
lowing the RT model, three different regions, i.e. s, li and
le, are considered, and a similar idea is used to deal with
the growth kinetics of the grain envelope.

Since its inception, the equiaxed solidification model –
especially the WB model – has been improved or extended
by many authors [21–27]. Nielsen et al. [21] developed a
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model to account for a transition from globular to den-
dritic growth. Heringer et al. [22] proposed a model of
equiaxed growth for the droplet produced by atomization,
by tracking the development of growth front between the
mushy zone and the undercooled extra-dendritic liquid,
i.e. the grain envelope. Gandin et al. [23] extended the
WB model to consider the formation of a secondary eutec-
tic structure, starting from the inter-dendritic liquid and
finally developing into the undercooled extra-dendritic
liquid. Recently, this idea was developed further and a gen-
eral model for concurrent dendritic, peritectic and eutectic
solidification was proposed [24,25]. Departing from the
volume-averaging method, the effects of melt convection
and grain sedimentation were introduced by Wu and Lud-
wig [26,27]. Furthermore, application of the equiaxed
solidification model to the columnar/equiaxed transition
[30–32] and extension of the model to multi-component
alloys [33,34] have also been paid much attention.

However, all the above models are only applicable to
solidification where the growth velocity is sufficiently small,
i.e. the local equilibrium condition is fulfilled at the solid/
liquid interface. As such, the interface kinetics and the cur-
vature effect are negligible, and a uniform temperature is
generally appropriate (see Refs. [16–21,23–25]). For rapid
solidification of undercooled melts, the growth velocity
can be so fast that not only the solid/liquid interface but also
the bulk undercooled liquid are under local non-equilibrium
conditions [7–12,35–40]. On this basis, the assumption of
linear liquidus and solidus in the above equiaxed solidifica-
tion models (except Ref. [21]) may not be reasonable. As
mentioned by Gandin et al. [22,24], the thermodynamic cal-
culation of the phase diagram (i.e. the effect of nonlinear liq-
uidus and solidus) should be considered to extend the above
equiaxed solidification model into extremely non-equilib-
rium solidification. In addition, the thermal undercooling,
i.e. the difference between the temperature of the dendrite
tip and the bath temperature far from the dendrite tip, could
be so large in rapid solidification [1–12] that the temperature
distribution is actually non-uniform.

As a first step to modeling the overall solidification
kinetics of undercooled melts, single-phase solid-solution
alloys were chosen. On this basis, the WB model [19,20]
was extended further by considering non-equilibrium kinet-
ics both at the solid/liquid interface and in the bulk under-
cooled liquid, and non-uniform temperature distribution.
The application of nonlinear liquidus and solidus was then
combined with the current model to produce a detailed
classification of the solidification path.

2. The volume-averaging method

2.1. Averaging theorems

For a field property u in the a phase, ua, its derivative
over time and space within a reference volume Vv can be
given according to the averaging theorems (see, e.g. Bec-
kermann et al. [19,20,28]) as
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where Aab, nab and vab are, respectively, the area, the out-
wardly directed normal unit vector and the velocity, of
the a/b interface, and h i is an averaging operator. The vol-
ume average of ua over Vv follows as
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where ca, a phase function, is equal to 1 in the a phase and
0 elsewhere. Analogously, the intrinsic volume average is
defined with respect to the volume of the a phase, Va, as

huaia ¼ 1
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where ga is the volume fraction of the a phase.

2.2. Conservation equations for mass, species and energy

In a system without melt convection, phase movement
and exchange of mass or species with the surrounding envi-
ronment, the conservation of the total mass of the a phase,
the mass fraction of the ith species in the a phase Ca

i and
the specific enthalpy of the a phase Ha, respectively, can
be expressed as
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where qa, Ja
i and qa are respectively the density, the diffu-

sive flux of the ith species and the heat flux of the a phase.
Integrating Eqs. (1)–(4) with Eqs. (5)–(7) gives the aver-

aged conservation equations:
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where the right-hand term of Eq. (8) stands for the ex-
change rate of the total mass of the a phase due to the
movement of the a/b interface and the first right-hand
terms (the second right-hand terms) of Eqs. (9) and (10)
are, respectively, the mass exchange rate of the ith species
and the energy exchange rate due to the movement of the
a/b interface (due to diffusion). The second term on the
left-hand side of Eq. (9), i.e. rhJa

i i, describes a macro-
scopic diffusion, which is actually negligible since its
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