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Abstract

An expression is proposed for the anisotropy of interfacial energy of cubic metals, based on the symmetry of the crystal structure. The
associated coefficients can be determined experimentally or assessed using computational methods. Calculations demonstrate an average
relative error of <3% in comparison with the embedded-atom data for face-centred cubic metals. For body-centred-cubic metals, the
errors are around 7% due to discrepancies at the {332} and {433} planes. The coefficients for the {100}, {110}, {111} and {210}
planes are well behaved and can be used to simulate the consequences of interfacial anisotropy. The results have been applied in
three-dimensional phase-field modelling of the evolution of crystal shapes, and the outcomes have been compared favourably with equi-
librium shapes expected from Wulff’s theorem.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Crystals are by their very nature anisotropic and inter-
faces between crystals similarly have energies and struc-
tures that are orientation dependent. Phase-field models
used to simulate microstructural development have
attempted to incorporate this interfacial anisotropy in a
variety of ways. The free energy density for a heteroge-
neous system with contributions from the chemical free
energy and interface energy is represented by:

gðu; c; T Þ ¼ g0ðu; c; T Þ þ
1

2
e2jruj2; ð1Þ

where g is the system free energy density, g0 is the chemical
free energy density, u is phase-field order parameter, c is
solute concentration, T is temperature and e is the gradient
energy coefficient. Interfacial anisotropy is generally intro-
duced by making e orientation-dependent. For example, in

the two-dimensional simulation of cubic crystals it is com-
mon to assume that [1]:

e ¼ �e 1þ ce cosðkehÞ½ �; ð2Þ
where �e is the mean value of e, h is the polar angular coor-
dinate of the interface normal, and ce and ke are anisotropy
parameters. Eq. (2) has been modified into other formats to
fulfil specific simulation targets [2,3]. In three-dimensional
phase-field models, the Cahn–Hoffman n vector theory
has been applied to describe the interface anisotropy
[4,5]. A suggestion made by Karma and Rappel for cubic
crystals is [6]:

e ¼ �e 1þ ceðn4
x þ n4

y þ n4
z Þ

h i
; ð3Þ

where nx, ny and nz are Cartesian coordinates of the inter-
face normal. More recently, Haxhimali et al. suggested that
the gradient energy coefficient takes the following format
to represent interface anisotropy in the context of phase
fields [7]:

e ¼ �e 1þ e1K1ðh;UÞ þ e2K2ðh;UÞ þ � � �½ �; ð4Þ
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where h and U represent the orientation of the interface
in spherical coordinates, e1 and e2 are coefficients reflecting
the extents of anisotropy, K1 and K2 are cubic harmonics
that are combinations of standard spherical harmonics
with cubic symmetry. The addition of the e2K2 term in
Eq. (4) (cf. Eq. (3)) is a result of reviewing molecular
dynamics simulations for dendrite growth which suggest
that this gives a better representation of anisotropy [8].

The motivation for the present work was to develop a
generic expression for interface anisotropy of cubic metals,
to specify coefficients in the resulting expression and to val-
idate the concept against existing knowledge of crystal
growth.

2. Interface energy anisotropy

In a cubic system, the normal to a plane with Miller
indices (hkl) plane is the direction [hkl]. The unit normal
n̂ has Cartesian coordinates nx, ny and nz. Fig. 1 illustrates
how these can be represented in polar or spherical
coordinates:

nx ¼ sin h cos / ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p ð5:1Þ

ny ¼ sin h sin / ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p ð5:2Þ

nz ¼ cos h ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p : ð5:3Þ

Anisotropy energy, in general, can be represented as expan-
sions of nx, ny and nz in various orders. In discussing mag-
netocrystalline anisotropy [9], the interface anisotropy is
represented by:

rðn̂Þ ¼ k0 þ
X

i;j

k1ninj þ
X
i;j;u;w

k1ninjnunw þ � � � ; ð6Þ

where k0, k1, k2 and k3 are the defining coefficients. The
subscripts of n represent the Cartesian coordinates. For cu-
bic symmetry, this simplifies into [10]:

rðn̂Þ ¼ k0 þ k1 n2
xn2

y þ n2
y n2

z þ n2
z n2

x

� �
þ k2n2

xn2
y n2

z

þ k3 n2
xn2

y þ n2
y n2

z þ n2
z n2

x

� �2

þ � � � : ð7Þ

Ignoring the higher-order terms and using Miller indi-
ces, Eqs. (5) and (7) give:

rðh; k; lÞ ¼ k0 þ k1

h2k2 þ k2l2 þ l2h2

ðh2 þ k2 þ l2Þ2
þ k2

h2k2l2

ðh2 þ k2 þ l2Þ3

þ k3

h2k2 þ k2l2 þ l2h2
� �2

h2 þ k2 þ l2
� �4

: ð8Þ

For given anisotropy coefficients k0, k1, k2 and k3, Eq.
(8) can express the interfacial energy as a function of
orientation.

Eq. (8) is different from the expansion based on cubic
harmonics [6,7] – for example, the leading anisotropic term

in Eq. (7) is not n4
x þ n4

y þ n4
z

� �
but n2

xn2
y þ n2

y n2
z þ n2

z n2
x

� �
.

Critical assessment of those two different expressions for
representing crystal anisotropy is important but is beyond
the scope of the present work. However, it is obvious that
Eq. (8) is consistent with cubic symmetry. For example, the
interfacial energy for all directions of the form <100> is k0.
For <110> it is k0 þ k1 þ k3, for <111> it is
k0 þ k1=3þ k2=9þ k3=9, etc. So, in conclusion, although
the individual coefficients cannot be identified with symme-
try elements the equation as a whole is consistent with
cubic symmetry.

It is required to validate the description inherent in Eq.
(8) for cubic anisotropy. The method here was fitted to
results from the embedded-atom method (EAM) [11,12].
These EAM calculations are based on embedding atomic
functions and electronic densities given by Baskes et al.
[13–15]. The least-squares method was used to fit the data
with the following objective function:

d ¼
X

i

rðh; k; lÞ � rEAMðh; k; lÞ½ �2; ð9Þ

where i is the total number of EAM data, rðh; k; lÞ is from
Eq. (8) and rEAM ðh; k; lÞ from EAM data. The best values
of k0, k1, k2 and k3 are obtained when d achieves a mini-
mum, i.e. at @d=@kj ¼ 0 with j = 0, 1, 2 and 3. Fig. 2 dem-
onstrates the efficacy of Eq. (8) for 10 face-centred cubic
(fcc) crystals, and the corresponding derived values of
anisotropy coefficients together with the average relative
errors (AvRE) are listed in Table 1. AvRE is defined as

AvRE ¼ ½jrðh; k; lÞ � rEAM ðh; k; lÞj=rEAM ðh; k; lÞ�. It can be
seen that 9 out of 10 fits have <2% average relative errors.

Fig. 1. Relation between Miller indices, and Cartesian and polar
coordinates in a cubic system.
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