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Abstract

A mathematical method is introduced to describe quantitatively the shape and shape evolution of precipitates in a two-phase
microstructure. The method relies on the concept of moment invariants, i.e. combinations of second-order moments that are invari-
ant with respect to affine and/or similarity transformations. Examples are given for special two-dimensional (2-D) shapes, including
rectangles, ellipses and regular polygons, and the concept of the moment invariant density map is introduced. Three applications to
2-D phase field simulations of c–c 0 superalloy microstructures are discussed: average particle shape, shape evolution and particle
consolidation.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The morphology of a simulated microstructure, e.g.
from a phase field simulation, is often compared to an
experimental microstructure in a distinctly non-quantita-
tive way; when phrases such as ‘‘the two are in good agree-
ment’’ or ‘‘they look very similar’’ are used, we rely
primarily on the powerful image analysis and pattern rec-
ognition operations that the human brain can carry out
in a split-second. Such an approach, while valuable and
useful to identify simulations that do not agree well with
the experiment, is necessarily limited, and must be aug-
mented by a more quantitative approach. When comparing
gray scale images obtained from experiments and computa-
tions, one must, in particular, be aware of the fact that the
human vision system can only distinguish between about

thirty different gray levels in a given image, so that subtle
intensity variations in either experimental or computed
images may go completely unnoticed. This suggests the
need for a numerical method capable of accurately describ-
ing (and, therefore, classifying) shapes in two or three
dimensions. The main purpose of this paper is to introduce
to the materials community a technique based on object
moment invariants. For simplicity, we restrict ourselves
to the case of two-dimensional (2-D) shapes; extensions
to 3-D shapes will be described elsewhere.

The quantitative analysis and description of shapes is of
fundamental importance to many fields of science and engi-
neering. A significant amount of literature, mostly in the
pattern recognition community, deals with the automated
recognition of patterns, such as fingerprints, and stationary
or moving objects embedded in a scene. For an overview of
pattern recognition methods we refer the interested reader
to Ref. [1]. In the context of materials science and engineer-
ing, pattern or shape recognition has obvious applications
in the automated analysis of microstructures, either in the
form of 2-D sections (micrographs) or 3-D reconstructed
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volumes (from serial sectioning methods [2] or from non-
destructive tomography-like methods [3]). In all these
cases, there is a need for a fast, quantitative method to
describe both the shape and the distribution (correlation)
of microstructural features.

A frequently used approach to the quantitative descrip-
tion of microstructures relies on the use of the two-point
(and potentially higher order) correlation function(s). Such
functions describe the probability that two (or more) ran-
domly selected points fall in the same phase of the multi-
phase microstructure [4]. As we will show explicitly in what
follows, the shape information of individual objects in a
microstructure is buried in the short-range portion of the
two-point correlation function.

The structure of this paper is as follows: we begin with a
general description of microstructures in terms of shape (or
indicator) functions and the two-point correlation func-
tion. In particular, we provide a justification for the study
of particle shapes, separate from the spatial distribution of
those shapes. Then we introduce the definition of moments
and moment invariants in two dimensions. In Section 4 we
provide a series of examples of moment invariants for a
variety of basic shapes and introduce the concept of the
moment invariant density map (MIDM), as well as equiv-
alent ellipses and the relation between the moment invari-
ants and isoperimetric inequalities. Section 5 deals with
three numerical applications based on the analysis of shape
changes during 2-D phase field simulations. We conclude
the paper with a few comments on the potential quantita-
tive uses of moment invariants for shape analysis and
reconstruction.

2. Two-point correlation functions and object shapes

Consider a (two-phase) microstructure consisting of iso-
lated particles in a matrix. Each particle is characterized by
its shape or indicator function, Di(r), where i = 1, . . .,Np

labels the particles; the origin of the local reference frame
is taken at the center-of-mass of each particle. The indica-
tor function of an object is defined as:

DðrÞ ¼
1 for r inside object

0 for r outside object

�
ð1Þ

Despite the fact that this function has discontinuities, its
Fourier transform turns out to be a well-behaved oscilla-
tory function, regardless of the object shape.

The total microstructure for an arbitrary arrangement
of particles is then described by the sum shape function:

SðrÞ ¼
XNp

i¼1

Diðr� riÞ ð2Þ

where ri are the coordinates of the center-of-mass of each
particle with respect to the sample (external) reference
frame.

The two-point correlation function, which represents the
probability that both ends of a line segment of arbitrary

length and orientation will be located in the same phase
(but not necessarily the same particle), can then be
expressed as the auto-correlation (or self-convolution)
function of the sum shape function. We have the following
expression:

CðqÞ ¼ 1

V
SðrÞHSðrÞ � 1

V

ZZZ
drSðrÞSðr� qÞ

where the pentagram symbol w indicates the auto-correla-
tion operator (e.g. see Ref. [5, p. 40]). The volume factor V

(the volume of the region of interest) serves to make the
auto-correlation function dimensionless. The vector q rep-
resents the line segment mentioned before, and the result of
the integration does not depend on the choice of the sign
(±) in the second sum shape function. We will also use
the symbol Ci(q) to represent the auto-correlation function
of an individual particle, i.e.

CiðqÞ �
1

V
DiðrÞHDiðrÞ ð3Þ

and Cij(q) for the cross-correlation between two particles:

CijðqÞ �
1

V
Diðr� riÞHDjðr� rjÞ ð4Þ

Next, we rewrite the two-point correlation between two
particles:

VCðqÞ ¼
XNp

i¼1

XNp

j¼1

Diðr� riÞHDjðr� rjÞ

¼
XNp

i¼1

DiðrÞHDiðrÞ þ
XNp

i¼1

XNp

j¼1
i6¼j

Diðr� riÞHDjðr� rjÞ

We find that the two-point correlation function consists of
two contributions:

CðqÞ ¼
XNp

i¼1

CiðqÞ þ
XNp

i¼1

XNp

j¼1
i 6¼j

CijðqÞ ð5Þ

The first sum contains the information on the individual
particle shapes, whereas the second sum describes the cor-
relations between different particles. It is not too difficult to
see that the auto-correlation function of a finite shape can
only be non-zero inside a finite region of q vectors. In fact,
this finite region is approximately twice as large in all direc-
tions as the volume of the original particle. For instance, if
the particle shape is a sphere of radius R, then the auto-
correlation function will be non-zero inside a sphere of
radius 2R, which indicates the fact that two identical
spheres can only overlap each other when the distance be-
tween the two centers is less than the sum of the radii, i.e.
less than 2R. This observation can be generalized easily to
other arbitrary shapes. The auto-correlation of a shape is
thus also known as the overlap volume of that shape. For
convex shapes, the auto-correlation of a shape can be
shown to be equal to the lineal path function of that shape,
i.e. the probability that a randomly oriented line segment
lies entirely inside the object.
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