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Abstract

We studied the microstructural evolution of multiple layers of elastically stiff films embedded in an elastically soft matrix using a phase
field model. The coherent and planar film/matrix interfaces are rendered unstable by the elastic stresses due to a lattice parameter mis-
match between the film and matrix phases, resulting in the break-up of the films into particles. With an increasing volume fraction of the
stiff phase, the elastic interactions between neighbouring layers lead to: (i) interlayer correlations from an early stage; (ii) a longer wave-
length for the maximally growing wave; and therefore (iii) a delayed break-up. Further, they promote a crossover in the mode of insta-
bility from a predominantly anti-symmetric (in phase) one to a symmetric (out of phase) one. We have computed a stability diagram for
the most probable mode of break-up in terms of elastic modulus mismatch and volume fraction. We rationalize our results in terms of the
initial driving force for destabilization, and corroborate our conclusions using simulations in elastically anisotropic systems.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that the planar interface of a non-
hydrostatically stressed solid in equilibrium with its melt
or vapour is unstable with respect to perturbations [1–3]:
this instability is known as Asaro–Tiller–Grinfeld (ATG)
instability. Based on elastic and interfacial energy consider-
ations alone, Grinfeld showed that, in the absence of inter-
facial energy, a planar boundary between a solid and its
melt or vapour is unstable with respect to perturbations
of any wavelength; the interfacial energy sets the lower
wavelength limit of this instability [4].

The literature on ATG instabilities is too vast and varied
to be summarized here; we refer the interested reader to the
excellent monographs of Nozières [5, chapter 1], Pimpinelli

and Villain [6] and Freund and Suresh [7], and the reviews
(and references therein) of Shchukin and Bimberg [8], Gao
and Nix [9], Stangl et al. [10], Johnson and Voorhees [11]
and Balibar et al [12] for a summary of the experimental
and theoretical studies.

Sridhar et al. [13,14] (hereafter SRS) have shown the
crucial role played by an elastic modulus mismatch in pro-
moting ATG instabilities; more specifically, for a misfitting
thin film layer embedded in a matrix (both in the presence
and absence of externally applied stresses), the planar film/
matrix interface is unstable with respect to perturbations as
long as the film is elastically stiffer than the matrix. In the
case of a non-misfitting film embedded in a matrix under an
externally applied stress, the interface is unstable as long as
the film and matrix have different elastic constants.

Using a linear stability analysis that accounts for both
curvature (or interfacial) and elastic contributions, SRS
identify two dominant modes of instabilities that a film/
matrix interface can undergo. Depending on whether the
undulations of the upper and lower interfaces of a film
are out of phase or in phase (see their schematic in Fig. 8
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of Ref. [14]), these modes are known as symmetric and
anti-symmetric, respectively. In addition, their stability dia-
grams show that the anti-symmetric mode is promoted at
higher values of the driving force for film destabilization.

While a linear stability analysis is ideal for the study of
onset of instability, it cannot accurately predict the evolu-
tion, break-up and coarsening of the microstructure. Fur-
ther, for multilayer films, interlayer correlations are far
too complicated to be included in such an analysis; thus,
for example, the multilayer part of the study by SRS was
carried out for a particular kind of interlayer correlation
in which the undulations of the upper interfaces of all the
films are in phase.

There are several simulation studies on the elastic stress-
induced morphological instabilities in thin films [15–35];
while most of these studies are based on the phase field
method [15–27], the rest are based on the phase field crystal
[28,29], continuum, sharp-interface [30–33] and atomistic
[34,35] models.

All the phase field studies that we are aware of are con-
cerned with the evolution of multilayer films in the presence
of the film/vapour (or film/melt) interface. In these studies,
the microstructural evolution is influenced by both the mul-
tilayer setting and the film/vapour interface, leading to dif-
ferent behaviours of individual layers, depending on their
distance from the film/vapour interface. Our study, on the
other hand, focuses on a ‘‘pure” multilayer geometry. It
allows us to determine the effects that arise from the multi-
layers alone. It also allows us to explore quantitatively the
role of system parameters in determining the mode of onset
of instability and the maximally unstable wavelength.

This paper is organized as follows: we present a brief
outline of the formulation in Section 2; in Section 3 we
present our numerical simulation results, and discuss the
key features of multilayer evolution in Section 4; we con-
clude the paper with a short summary.

2. Formulation

In this section, we outline our phase field model for sys-
tems that are elastically inhomogeneous and anisotropic.
The model is based on the Cahn–Hilliard equation [36];
details of its formulation and numerical implementation
can be found in Ref. [37,38].

We consider a binary alloy consisting of two phases,
namely, p and m, whose scaled equilibrium compositions
in the absence of elastic stresses are unity and zero, respec-
tively. Our phase field formulation starts with the following
expression for the total free energy F of a system with spa-
tial variations in composition c:

F ¼ N v

Z
½Ac2ð1� cÞ2 þ jðrcÞ2�dV þ 1

2

Z
rel : �eldV ð1Þ

where N v is the number of atoms per unit volume, j is the
(positive) gradient energy coefficient, A is the free energy
barrier between the two phases, �el and rel are the elastic
strain and stress fields, respectively, and ‘:’ denotes the ten-

sor inner product. The microstructural evolution in the sys-
tem is described by the Cahn–Hilliard equation:

oc
ot
¼ r �Mrl ð2Þ

where l is the chemical potential, defined as the variational
derivative of the free energy with respect to composition:

l ¼ dðF =N vÞ
dc

ð3Þ

The stress, rel, is obtained by assuming Hooke’s law
(that is, the phases m and p are linear elastic):

rel
ij ¼ Cijkl�

el
kl ð4Þ

where we have used Einstein’s convention of summation
over repeated indices. Cijkl is the elastic modulus tensor
and �el

ij is the elastic strain, given by

�el
ij ¼ �ij � �0

ij ð5Þ

where �0
ij is the eigenstrain and �ij is the total strain compat-

ible with the displacement ui:

�ij ¼
1

2

oui

orj
þ ouj

ori

� �
ð6Þ

The displacement field is obtained by solving the equa-
tion of mechanical equilibrium:

orel
ij

orj
¼ 0 ð7Þ

We assume the following composition dependences for
the elastic moduli and the eigenstrain:

CijklðcÞ ¼ Ceff
ijkl þ aðcÞDCijkl ð8Þ

�0
ijðcÞ ¼ bðcÞ�Tdij ð9Þ

where aðcÞ and bðcÞ are scalar interpolating functions of
composition, Ceff

ijkl ¼ ðC
p
ijkl þ Cm

ijklÞ=2 is the arithmetic aver-
age of the elastic moduli of the two phases,
DCijkl ¼ Cp

ijkl � Cm
ijkl is the difference between the elastic mod-

ulus of the p phase and that of m phase, �T denotes the
strength of the eigenstrain and dij is the Kronecker delta.

2.1. Simulation details and parameters

We use a semi-implicit Fourier spectral technique to
solve the evolution equation for composition (Eq. 2) in
two dimensions, with periodic boundary conditions. The
evaluation of the right-hand side (RHS) of Eq. 2 involves
not only the composition and its gradient, but also the elas-
tic stress and strain fields. For a given composition field, we
obtain the elastic stress and strain fields by solving the
equation of mechanical equilibrium (Eq. 7). The solution
of the equation of mechanical equilibrium is also obtained
using a Fourier-based iterative technique, assuming pre-
scribed displacement conditions (in other words, the homo-
geneous strain is zero); see Refs. [37–39] for details. Once
we obtain the stress and strain fields, the RHS of Eq. 2
can be evaluated, which is then used for time stepping
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