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Abstract

The columnar-to-equiaxed transition (CET) in directional solidification of alloys is simulated using the phase-field method. The
method relies on the solution of a solute conservation equation and an equation for the propagation of the phase field on the scale
of the developing microstructure. A parametric study is performed to investigate the effects of the applied temperature gradient and pull-
ing speed, the seed spacing and nucleation undercooling for the equiaxed grains, and the crystalline anisotropy strength on the CET. The
results qualitatively agree with a previously developed analytical model of the CET. At relatively high pulling speeds, a mixed columnar–
equiaxed structure is found to be stable over a range of temperature gradients. Furthermore, the CET depends sensitively on the anisot-
ropy strength. The simulations also reveal the presence of primary spacing adjustments during purely columnar growth due to nucleation
of seeds, and deactivation of seeds by solutal interactions from nearby growing grains.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The columnar-to-equiaxed transition (CET) in the grain
structure of metal alloy castings has fascinated researchers
in the solidification area for more than 50 years [1]. The
CET is usually assumed to occur when the advance of
the columnar front is blocked by equiaxed grains that grow
in the constitutionally undercooled liquid ahead of the
columnar dendrites. Based on this idea, Hunt [2] developed
an analytical model that predicts the CET during direc-
tional solidification as a function of the applied tempera-
ture gradient, the solidification speed, and the nucleation
undercooling and number density of equiaxed grains. This
model has been extended and improved by several
researchers [3–5]. A simulation model that relies on the
solution of averaged conservation equations that are cou-
pled to nucleation and growth laws has been presented

by Beckermann and co-workers [6,7]. More complex mod-
els have followed the nucleation and growth of each indi-
vidual grain (e.g., Refs. [8–12]). By predicting the size,
orientation, and shape of each grain, the location of the
CET in a casting can be inferred directly from the appear-
ance of the calculated grain structure. These studies rely on
the same type of dendrite tip growth models for the evolu-
tion of the grain envelopes as the previous modeling studies
[2–7]. A solute diffusion equation is not solved, and the
motion of the solid–liquid interface on a microscopic scale
is not resolved.

With recent advances in computational power, direct
microstructure simulation techniques hold some promise
for modeling the CET. Spittle and Brown [13], Nastac
[14], and Dong and Lee [15] have applied so-called cou-
pled cellular automaton finite difference (CA-FD) meth-
ods to simulate the CET in metal alloy castings. In this
class of methods, the solid–liquid interface is tracked
directly on the numerical grid and its motion is deter-
mined from the numerical solution of a solute diffusion
equation on a microscopic scale. Grain envelopes are
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not considered and no use is made of separate dendrite tip
growth models. While the CA-FD methods produce real-
istic-looking dendritic growth patterns and have resulted
in much insight into the CET, some questions remain
regarding their accuracy. Independence of the results on
the numerical grid size is rarely demonstrated. Further-
more, the CA-FD techniques often rely on relatively arbi-
trary rules for incorporating the effects of crystallographic
orientation while propagating the solid–liquid interface.
For example, in the most recent and advanced study using
a CA-FD technique [15], the strength of the surface
energy anisotropy is not even specified. It is now well
accepted that dendritic growth of crystalline materials
depends very sensitively on the surface energy anisotropy
[16,17].

The phase-field method has also become a popular tech-
nique for the direct numerical simulation of microstructure
evolution in solidification [18]. However, progress in model-
ing solidification of alloys using the phase-field method has
been relatively slow. The first fully quantitative phase-field
model that allows for unequal solute diffusivities in the
liquid and solid was only developed in 2001 [19]. This model
has been extended by Ramirez et al. [20] to account for cou-
pled heat and solute diffusion and by Echebarria et al. [21]
to directional alloy solidification with an applied tempera-
ture gradient. Recently, Ramirez and Beckermann [22]
used this phase-field model to study free dendritic growth
of alloy dendrites. These studies clearly demonstrate that
the phase-field method allows for accurate and fully grid-
independent simulations of alloy solidification on the scale
of the microstructure.

The objective of the present study is to perform direct
numerical simulations, in two spatial dimensions, of the
CET in alloy solidification using the phase-field model of
Refs. [20,21]. The phase-field model equations are briefly
summarized in the next section. The numerical procedures
are explained in Section 3. Section 4 presents the results
of numerous simulations where the CET is studied as a
function of the applied temperature gradient and pulling
speed, the equiaxed grain nucleation undercooling and
number density, and the crystalline anisotropy. In addi-
tion, the results are compared to the original CET model
of Hunt [2]. The conclusions of the study are summarized
in Section 5.

2. Phase-field model

The phase-field model employed here allows for the sim-
ulation of microstructural patterns during the solidification
of dilute binary alloys. It has been derived and extensively
validated by Ramirez et al. [20] and Echebarria et al. [21].
The model neglects the solute diffusivity in the solid, and all
material properties are assumed constant. It reduces to the
sharp interface equations in a thin interface limit where the
width of the diffuse interface is smaller than the radius of
curvature of the interface but larger than the real width
of a solid–liquid interface, and when kinetic effects are neg-

ligible. The anti-trapping current concept of Karma [19] is
applied to recover local equilibrium at the interface and
eliminate interface stretching and surface diffusion effects
that arise when the solute diffusivities are unequal in the
solid and liquid.

Let / represent the phase field, where / = 1 in the bulk
solid phase and / = � 1 in the bulk liquid phase. The
phase field varies smoothly between these bulk values
within the diffuse interface region. The anisotropic and
dimensionless forms of the phase-field and species equa-
tions, for a vanishing kinetic effect, are given in two-dimen-
sional form, respectively, by [20,21]
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where n̂ ¼ � ~r/= ~r/
��� ��� is the unit vector normal to the

interface, asðn̂Þ ¼ 1þ e cosð4/Þ is a function that describes
the surface energy anisotropy, / = arctan(oy//ox/) is the
angle between the direction normal to the interface and
the horizontal axis, e is a dimensionless parameter that
characterizes the anisotropy strength, k is the partition
coefficient, x and y are the spatial coordinates, and t is
time. In the present study, the crystal axes are always
aligned with the coordinate axes. The anti-trapping current
~jat is given by [19]
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which is non-zero only inside the diffuse interface region.
The time and length scales used to non-dimensionalize

equations (1) and (2) are s0 ¼ ðd2
0=DÞa2k

3=a2
1 and W 0 ¼

d0k=a1, which represent a relaxation time and a measure
of the interface width, respectively. Here, d0 is the chemical
capillary length and D is the solute diffusivity in the liquid
phase. The dimensionless solute diffusivity is given by
~D ¼ Ds0=W 2

0 and k is a dimensionless coupling parameter,
which is chosen as k ¼ ~D=a2 to simulate kinetics-free
growth (a1 = 0.8839, a2 = 0.6267) [23]. The coupling con-
stant k is the only free parameter and the results should
be independent of k when they are converged. Decreasing
k corresponds to decreasing the diffuse interface width,
since k = a1W0/d0.
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