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Abstract

About two decades ago, Bunge and Esling [Scripta Metall 1984; 18: 191–5] put forth a novel concept for capturing and simulating

crystallographic texture evolution during large plastic strains on metals using an efficient spectral representation of the orientation

distribution function. Although this methodology indicated promise, it was never evaluated critically by these authors, possibly

because of the high demands it placed on computational resources. In this paper, the Bunge and Esling concept is revisited and eval-

uated critically for the first time for a range of deformation processes and starting textures. It is demonstrated that this technique is

indeed potentially capable of providing good predictions, especially when the higher order terms in the Fourier expansion are

included in the analysis.
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Keywords: Texture evolution; Crystal plasticity; Spectral method; Rolling textures; Orientation distribution function

1. Introduction

The Taylor model and its extensions are widely

used in the current literature for modeling crystallo-

graphic texture evolution during large plastic strains,

and have been demonstrated to provide good predic-

tions in single phase, medium to high stacking fault

energy, cubic metals [2–11]. Although the Taylor mod-

el and the associated crystal plasticity theories have

enjoyed major successes in their ability to predict plas-
tic behavior of metals at various length scales, they

are not yet widely used in the engineering design

enterprise. The main factor hindering the much wider

use of these models is the high computational cost

associated with them; the requirement for high com-

putational resources persists in spite of the successful

development and implementation of very efficient

numerical schemes for these calculations. Conse-

quently, there are several ongoing efforts in current lit-
erature to develop novel techniques that would possess

the predictive capabilities of the Taylor-type model,

but would require significantly less computational re-

source [12–15]. In many of these approaches, the

underlying physics governing the evolution of the

crystallographic texture in deformation processes

continues to be provided by the Taylor-type model

(actually the proposed methods are often calibrated
with the Taylor-type model to ensure good agree-

ments). The goal of these efforts is to capture the re-

sults of the Taylor-type model in efficient databases

that might require a one-time high computational

cost, but once these are accomplished, the actual pre-

dictions can then be obtained with minimal computa-

tional cost.

This paper focuses on the concept proposed origi-
nally by Bunge and Esling [1], which uses spectral repre-

sentation of crystallographic texture. In this method, the
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texture in the sample is represented as a probability den-

sity function, commonly referred to as the orientation

distribution function (ODF) [16]:

dN
N

¼ fðgÞdg. ð1Þ

In Eq. (1), f(g) represents the ODF, g denotes the crystal

orientation (often expressed by a set of three Euler an-

gles called Bunge�s Euler angles [16]; g = [/1,U,/2]),

and dN/N represents the probability of finding an orien-

tation in a small neighborhood of g, characterized by dg,
in a random trial. Note that the definition of ODF is

normalized such that »f(g)dg = 1.0. Since f(g) is a contin-

uous function, it can be represented in a Fourier series

[16]:

f ðgÞ ¼
X1
l¼0

XMðlÞ

l¼1

XNðlÞ

m¼�l

F lm
l T

)
lm
l ðgÞ. ð2Þ

In Eq. (2), F lm
l represent the Fourier coefficients and

T
)
lm
l ðgÞ denote a complete set of orthonormal basis func-

tions (also referred to as generalized spherical harmon-

ics) that automatically reflect the associated crystal and

sample symmetries. In particular, the three dots on the

spherical harmonic functions shown here imply cubic

crystal symmetry (e.g., face-centered cubic, body-cen-

tered cubic metals) and orthorhombic sample symmetry

(e.g., deformation processes such as rolling, cross-roll-
ing, simple compression, simple tension). The functions

M(l) and N(l) denote the number of terms needed in the

enumeration of indices l and m; these numbers are a

function of the index l and are determined by material

and sample symmetries [16]. In order to keep things

simple in this first comprehensive investigation into

the validity of the Bunge–Esling approach [1], we have

restricted the present study to considerations of only
those deformation processes that inherently retain

orthorhombic sample symmetry. The extension of this

method to other deformation processes (e.g., rotations,

shear deformation modes) requires the use of cubic-tri-

clinic functions, T
:
lm
l ðgÞ, in place of the cubic-ortho-

rhombic functions, T
)
lm
l ðgÞ, used in the present study.

Utilizing the representations described above to-

gether with a framework proposed by Clement and Cou-
lomb [17] for representation of crystal lattice rotations

as a vector flow field in an Eulerian angle space, Bunge

and Esling [1] derived the following simple relation to

represent the evolution of texture in a given deformation

process (with a prescribed macroscopically imposed

velocity gradient tensor):

dF lm
l

dg
¼
X1
k¼0

XMðkÞ

r¼1

XNðkÞ

q¼1

~A
lmrq

lk F rq
k . ð3Þ

In Eq. (3), g is an appropriate metric of the deformation

process (for example, for rolling g could represent the

compressive strain), and the coefficients ~A
lmrq

lk are con-

stant for a given deformation process independent of

the crystal lattice orientation. Following the original

derivation of Eq. (3) by Bunge and Esling [1], one can

recognize that the coefficients ~A
lmrq

lk are essentially Fou-

rier coefficients in the spectral representation of the tex-

ture flow field in the orientation space for a given
deformation process. As with any spectral representa-

tion, one can indeed write an analytical expression for

these coefficients. However, as remarked by Bunge and

Esling [1], the derivation of an analytical expression

for ~A
lmrq

lk requires the use of tedious calculus involving

field theory and Clebsch–Gordon coefficients. To cir-

cumvent this challenge, Bunge and Esling [1] suggest

that the coefficients ~A
lmrq

lk be established numerically

for a specified deformation process by calibrating

Eq. (3) with predictions from a Taylor-type model for

a large number of single crystal orientations. The cali-
bration procedure suggested by these authors is essen-

tially a linear regression analysis to find the coefficients
~A
lmrq

lk by minimizing the error in Eq. (3) for a very large

number of single crystal orientations, for a given defor-

mation process. Although they describe this numerical

approach for the computation of ~A
lmrq

lk in detail, they

actually do not report performing such a calculation

or any results of such a calculation. They specifically cite
that for expansions of the Fourier series to include terms

up to l = 22 (see Eq. (2)), one would need to handle 185

F lm
l terms1 and 34,225 (=1852) independent ~A

lmrq

lk terms.

This is because the number of ~A
lmrq

lk coefficients in

Eq. (3) increases as the square of the number of F lm
l

terms desired in the representation of texture. Implicitly,

if one was to establish the numerical values of 34,225
~A
lmrq

lk coefficients (note that these are fully coupled

through Eq. (3)) using regression analysis, one would

have to invert a 34,225 · 34,225 square matrix – a formi-

dable task even for today�s computers.
In this paper, we report for the first time a critical

evaluation of the Bunge and Esling concept. Here, we

have included the terms in the Fourier expansion up

to l = 17, resulting in 83 independent F lm
l terms and

6972 (=832) independent ~A
lmrq

lk terms. It should be

noted that there are substantial differences between

this work and the recent work of Li et al. [13], who

have also addressed this problem by extending the ori-

ginal approach described by Bunge and Esling [1].

Our two groups have enjoyed a long history of collab-

oration, and in this research we have adopted two dif-
ferent approaches. The main differences between our

two approaches are:

1 Because of crystal and sample symmetries, certain of the F lm
l

coefficients are always zero. So these can be skipped, reducing the

number of non-zero terms that need to be handled in these

calculations.
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