Contents lists available at ScienceDirect

Chemical Engineering Journal

Chemical Engineering Journal

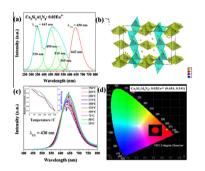
Eu^{2+} -activated $Ca_5Si_2Al_2N_8$ – A novel nitridoalumosilicate red phosphor containing the special polyhedron of separated corner-shared [Al₂N₆] and [Si₂N₆]

Jianyan Ding, Quansheng Wu, Yanyan Li, Qiang Long, Yichao Wang, Yuhua Wang*

Key Laboratory for Special Function Materials and Structural Design of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

HIGHLIGHTS

- A novel nitride based phosphor $Ca_5Si_2Al_2N_8$: Eu^{2+} has been synthesized.
- Ca_5Si_2Al_2N_8 contains [Al_2N_6] and [Si_2N_6] polyhedrons and three Ca^{2+} sites.
- Ca₅Si₂Al₂N₈: Eu²⁺ emits a red light and has a broad excitation band.
- The Ca₅Si₂Al₂N₈: Eu²⁺ shows an excellent thermal stability.

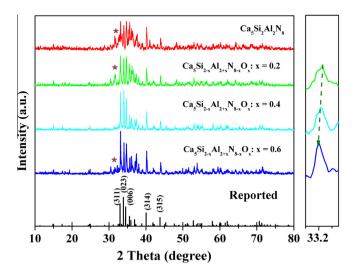

ARTICLE INFO

Article history: Received 8 March 2016 Received in revised form 3 May 2016 Accepted 16 May 2016 Available online 17 May 2016

Keywords: LEDs Nitride Red phosphor

G R A P H I C A L A B S T R A C T

Crystal structure and luminescent properties of Ca₅Si₂Al₂N₈: Eu²⁺ have been discussed.


ABSTRACT

In this work, a novel nitride based Eu^{2+} activated phosphor of $Ca_5Si_2Al_2N_8$ has been successfully synthesized by the solid-state reaction at the constant pressure. The crystal structure has been refined using the Rietveld refinement. The $Ca_5Si_2Al_2N_8$ crystallizes in Orthorhombic with lattice parameters of a = 9.2336(12) Å, b = 6.1317 (8) Å, c = 15.5049 (20) Å and V = 877.85 (31) Å³, respectively. The special polyhedrons of $[Al_2N_6]$ and $[Si_2N_6]$ built up by the edge shared SiN₄ and AlN₄ tetrahedrons have been found in the $Ca_5Si_2Al_2N_8$, and the Al and Si ions are arranged in the separated sites. The three Ca^{2+} sites with the coordination number of six, seven and eight provide suitable sites for Eu^{2+} ions to occupy. The luminescence spectra of Eu^{2+} doped $Ca_5Si_2Al_2N_8$ show that a red light with the peak at 643 nm (FWHM ≈ 92 nm) can be observed, and the broad excitation band ranges from 350 nm to 565 nm. The excellent thermal stability has also been detected, which shows that the intensity at 150 °C is still beyond 90% of the initial intensity. © 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the warm white light emitting diodes (WLEDs) have attracted much attention because of their advantage of long service lifetime, high light efficiency and low energy consumption

* Corresponding author. E-mail address: wyh@lzu.edu.cn (Y. Wang). [1–4]. The common way to obtain the white light is the combination of the InGaN blue emitting LED and yellow emitting phosphor of $Y_3Al_5O_{12}$: Ce³⁺ (YAG: Ce³⁺). However, this kind of white light suffers from the problem of a low color rendering index (CRI) and a high correlated color temperature due to the lack of the red component [5,6]. So the red phosphors play an important role in the WLEDs. Recently, nitride based red phosphors have attracted much attention because of their outstanding thermal stability and

Fig. 1. The XRD patterns of $Ca_5Si_{2-x}Al_{2+x}N_{8-x}O_x$ with x = 0, 0.2, 0.4 and 0.6.

chemical stability, excellent luminescence properties and high quantum efficiency, such as: $Sr_2Si_5N_8$ [7], CaAlSiN₃ [8,9] and so on. However, the preparation of harsh conditions with high temperature and high pressure limited their application in the LEDs. Therefore, it is urgent to find new nitride based red phosphors produced under the relative low temperature and constant pressure to reduce the cost.

Among the Si₃N₄–AlN system, the edge-shared SiN₄ (or AlN₄) tetrahedron pairs have first been found in the host lattice of Ca₅Si₂Al₂N₈ with Al and Si ions occupying different sites. And the [Al₂N₆] and [Si₂N₆] polyhedrons connecting with each other through the corner-shared way with alternate configuration made up the main framework of Ca₅Si₂Al₂N₈, which shows a tight host lattice, and the strong crystal field effect resulted by this hard host lattice is necessary for Eu²⁺ ions to emit a red light. Commonly, nitridoalumosilicate are made up of SiN₄ (or AlN₄) tetrahedron through the corner-shared way. The edge-shared SiN₄ and AlN₄

tetrahedron pairs in Ca₅Si₂Al₂N₈ have rarely been reported. And Ba₂AlSi₅N₉ [10] contains the edge-shared AlN₄ and SiN₄ tetrahedron pairs, but it shows that Al and Si ions randomly occupy the same sites, which could not be distinguished. The different ratio of Al/Si in the material synthesized have been observed in host lattice of Ca₅Si₂Al₂N₈ and the same phenomenon have also happen in CaAlSiN₃, which implies the ratio of Al/Si play an important role in the change of crystal structure of nitridoalumosilicate.

Compared with the common commercial nitride based red phosphors, the $Ca_5Si_2Al_2N_8$ can be synthesized at the constant pressure, which have been first reported by Frank Ottinger and co-workers [11]. However, the luminescence properties of Eu^{2+} activated $Ca_5Si_2Al_2N_8$ have never been reported. In this work, we have successfully synthesized the Eu^{2+} activated $Ca_5Si_2Al_2N_8$ red phosphor and analyzed its crystal structure by the Rietveld refinement. And the electronic structure of $Ca_5Si_2Al_2N_8$ has also been calculated by DFT method to show the bandgap used for Eu^{2+} ions building the luminescent center. Finally, the thermal stability of $Ca_5Si_2Al_2N_8$ has been investigated.

2. Experimental section

2.1. Material and synthesis

A series of $Ca_5Si_2Al_2N_8$: Eu^{2+} phosphors have been synthesized by the high temperature solid-state reaction. Appropriate amounts of Ca_3N_2 (Aldrich, >95.0%), Si_3N_4 (Aldrich, 99.5%), AlN (Aldrich, >98.0%) and EuF_3 (Aldrich, 99.99%) were weighted as starting materials according to nominal composition. The raw materials were fully mixed and grounded in an agate mortar, and then the final mixture was placed into a BN crucible. The former procedure was completed in a glovebox. Finally, the crucible was positioned in a horizontal tube furnace and fired at 1300 °C in a N_2 atmosphere for 12 h. When the furnace cooled to room temperature, the samples were taken out and ground again into powders for measurement.

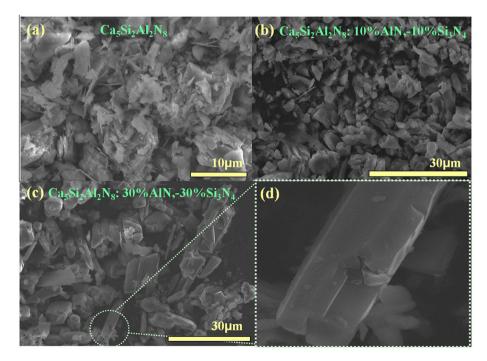


Fig. 2. SEM micrographs of $Ca_5Si_{2-x}Al_{2+x}N_{8-x}O_x$ with x = 0, 0.2 and 0.6, respectively.

Download English Version:

https://daneshyari.com/en/article/145366

Download Persian Version:

https://daneshyari.com/article/145366

Daneshyari.com