

Available online at www.sciencedirect.com



Cement & Concrete Composites

Cement & Concrete Composites 28 (2006) 914-927

www.elsevier.com/locate/cemconcomp

# Deformation capacity of RC piers wrapped by new fiber-reinforced polymer with large fracture strain

Dhannyanto Anggawidjaja <sup>a</sup>, Tamon Ueda <sup>a,\*</sup>, Jianguo Dai <sup>b</sup>, Hiroshi Nakai <sup>c</sup>

<sup>a</sup> Division of Built Environment, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Japan

<sup>b</sup> Life Cycle Management Center, Port and Airport Research Institute, Yokosuka 239-0826, Japan

<sup>c</sup> Department of Civil Engineering Design, Mitsui-Sumitomo Construction Co. Ltd., Shinjuku-ku, Tokyo, Japan

Available online 25 September 2006

#### Abstract

One of the major drawbacks of structure strengthening by fiber reinforced polymer wrapping using materials such as CFRP and AFRP, whose strength and stiffness are high, is the brittle nature of failure mode, which is caused by fracture of the fiber due to low fracturing strain. A series of experiments were conducted to investigate the efficiency of using two new types of fibers, polyethylene naph-thalate (PEN) and polyethylene terephthalate (PET) fiber, for seismic strengthening of RC piers. These fibers have the properties of low stiffness and high fracturing strain. Specimens strengthened by PET and PEN fiber sheets wrapping showed considerable improvement in shear capacity and ductility compared to the control specimen. Both PET and PEN showed no tendency to fiber breakage before the predefined ultimate deformation. Pier behaviors such as shear deformation and strain development in both fiber and steel shear reinforcement, and the piers, ultimate failure modes, were carefully examined. Shear deformation increases rather rapidly after peak load and concrete shear capacity decreases with the increase in shear deformation. Stiffness of fiber affects the development of shear deformation and the descending branch of the load–deformation curve after the peak load. A simple model to predict the piers deformation capacity, based on the experimental results, was proposed.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Shear; Ductility; Wrapping; PET; PEN; High fracturing strain

#### 1. Introduction

The recent large earthquakes in Japan exposed the vulnerabilities of its existing reinforced concrete structures. The Great Hanshin earthquake revealed that structures designed by the old design code need strengthening of their shear capacity. Furthermore, in the structures with comparatively high shear capacity, it was also noted that increased ductility in order to withstand large seismic action is necessary.

Strengthening of reinforced concrete piers with fiber material jacketing has proven to be able to meet these two demands efficiently. The usage of fiber material in the strengthening scheme is preferable to steel in many cases [1–4] due to the advantages of fiber compared to steel [5,6]. The high strength-to-weight ratio of fiber, resistance to corrosion and easy handling and installation make fiber reinforced polymer (FRP) jackets the preferred material for strengthening.

Due to the above-mentioned advantages, conventional FRP materials such as aramid, carbon, and glass are frequently used for seismic strengthening of reinforced concrete piers. Many researchers have proven the effectiveness of their application in shear and ductility enhancement. However, it should be noted that due to their low fracturing strain capacity, these fiber materials tend to fail sooner due to fiber breakage before the structures can fully utilize their reinforced strength [3,7]. The breakage of fiber causes a loss of confinement and a sudden loss of load-carrying

<sup>\*</sup> Corresponding author. Tel.: +81 11 706 6218; fax: +81 11 706 6582. *E-mail addresses:* dhannyanto@yahoo.com (D. Anggawidjaja), ueda@eng.hokudai.ac.jp (T. Ueda), dai@pari.go.jp (J. Dai), hironky2@ smcon.co.jp (H. Nakai).

<sup>0958-9465/\$ -</sup> see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.cemconcomp.2006.07.011

Table 1

Specimens details

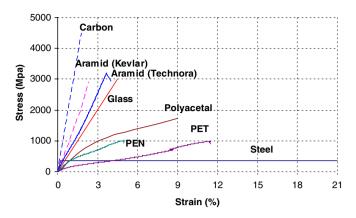



Fig. 1. Stress and strain relationships of various materials.

capacity and directly limits the ductility potential. Because this can lead to sudden failure of the structure, breakage of fiber is not favourable. In the design procedure the limitation of fiber strain is used to determine the reinforced concrete (RC) piers strength capacity to avoid rupture of fiber material [8].

New fiber materials such as polyacetal fiber (PAF), polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) have properties of large fracturing strain and low stiffness in comparison to aramid, carbon, and glass fibers [9–11]. Fig. 1 shows the stress–strain relationships of various fiber materials. Previous studies [9] using polyacetal fiber showed that large fracturing strain fiber is less likely to fracture before the RC piers reach their ultimate deformation. Continuous shear force and enhanced ductility could be gained from the fiber to compensate for the reduction concrete shear capacity due to damage induced by large cracks and seismic action.

The objective of this research is to investigate the shear strengthening and ductility enhancement of reinforced concrete piers confined with high fracturing strain fiber materials, PET and PEN. Based on these test results, models for predicting the ultimate deformation of strengthened RC piers are proposed.

### 2. Experimental program

#### 2.1. Details of test setup

A total of 15 RC piers in four experimental batches were constructed to represent a rectangular pier of a regular bridge, while the bottom part represented the footing of the pier. The first and second batch specimens were rectangular piers with a cross section of  $400 \times 400$  mm. The third and fourth batches were rectangular piers with dimensions of  $600 \times 600$  mm. The pier cross section areas of third and fourth batches were enlarged to give closer resemblance and response to actual pier dimensions. The size effect was not considered as a parameter in this research. All pier corners were rounded with a rounding radius of 25 mm.

| Specimen    | $f_{\rm c}'$ | a/d | $\rho_{\rm t}$ (%) | $ ho_{\mathrm{w}}$ (%) | $\rho_{\rm f}$ (%) | Fiber material |
|-------------|--------------|-----|--------------------|------------------------|--------------------|----------------|
|             | Jc           | ,   | Ft (7-7)           | F w ( / - )            | F1 (, -)           |                |
| First batch |              |     |                    |                        |                    |                |
| SP1         | 29.5         | 3   | 2.87               | 0.16                   | -                  | -              |
| SP2         | 29.5         | 3   | 2.87               | 0.16                   | 0.13               | A2             |
| SP3         | 29.5         | 3   | 2.87               | 0.16                   | 0.38               | PEN            |
| SP4         | 29.5         | 3   | 2.87               | 0.16                   | 0.37               | PET            |
| Second bate | ch           |     |                    |                        |                    |                |
| SP5         | 31.7         | 3   | 2.87               | 0.16                   | 0.19               | PET            |
| SP6         | 31.7         | 4   | 2.87               | 0.16                   | 0.12               | PET            |
| SP7         | 31.7         | 4   | 2.87               | 0.16                   | 0.06               | PET            |
| SP8         | 31.7         | 4   | 2.87               | 0.16                   | _                  |                |
| SP9         | 31.7         | 4   | 3.59               | 0.16                   | 0.12               | PET            |
| SP10        | 31.7         | 4   | 2.15               | 0.16                   | 0.06               | PET            |
| Third batch |              |     |                    |                        |                    |                |
| SP11        | 31.7         | 4   | 2.82               | 0.2                    | 0.25               | PET            |
| SP12        | 31.7         | 4   | 2.82               | 0.2                    | 0.125              | PET            |
| Fourth batc | h            |     |                    |                        |                    |                |
| SP13        | 34.5         | 3   | 2.82               | 0.2                    | 0.29               | PET            |
| SP14        | 23.7         | 3   | 2.82               | 0.09                   | 0.42               | PET            |
| SP15        | 31.1         | 3   | 2.82               | 0.09                   | 0.42               | PEN            |

| Table | 2 |  |
|-------|---|--|
| ~     |   |  |

| Shear of | capacities |
|----------|------------|
|----------|------------|

| Specimen     | $V_{\rm c}$  | $V_{\rm s}$ | $V_{\rm tot}$ | $M_{ m u}$ | $V_{\mathrm{u}}$ | $V_{\rm tot}$ | Ductility |
|--------------|--------------|-------------|---------------|------------|------------------|---------------|-----------|
|              | (kN)         | (kN)        | (kN)          | (kN m)     | (kN)             | $V_{\rm u}$   | 2         |
| First batch  | !            |             |               |            |                  |               |           |
| SP1          | 151          | 79          | 230           | 331        | 288              | 0.8           | 5.09      |
| SP2          | 151          | 79          | 230           | 331        | 288              | 0.8           | 11.84     |
| SP3          | 151          | 79          | 230           | 331        | 288              | 0.8           | 10.65     |
| SP4          | 151          | 79          | 230           | 331        | 288              | 0.8           | 11.42     |
| Second bai   | Second batch |             |               |            |                  |               |           |
| SP5          | 155          | 79          | 234           | 334        | 290              | 0.8           | 7.98      |
| SP6          | 155          | 79          | 234           | 334        | 223              | 1.05          | 9.05      |
| SP7          | 155          | 79          | 234           | 334        | 223              | 1.05          | 8.46      |
| SP8          | 155          | 79          | 234           | 334        | 223              | 1.05          | 7.40      |
| SP9          | 169          | 79          | 248           | 401        | 267              | 0.93          | 8.76      |
| SP10         | 151          | 79          | 230           | 265        | 177              | 1.3           | 10.41     |
| Third bate   | h            |             |               |            |                  |               |           |
| SP11         | 318          | 206         | 524           | 1018       | 463              | 1.13          | 8.52      |
| SP12         | 318          | 206         | 524           | 1018       | 463              | 1.13          | 7.54      |
| Fourth batch |              |             |               |            |                  |               |           |
| SP13         | 327          | 105         | 432           | 1051       | 637              | 0.84          | 7.76      |
| SP14         | 289          | 83          | 372           | 1010       | 612              | 0.61          | 4.12      |
| SP15         | 316          | 83          | 399           | 1058       | 641              | 0.62          | 6.87      |

Tables 1 and 2 give details of the test specimens. The first and second batch specimens used 19 mm deformed bars for longitudinal reinforcement and 6 mm deformed bars for stirrups. The third batch specimens used 25 mm deformed bars for stirrups. The fourth batch specimens used 25 mm deformed bars for stirrups. The fourth batch specimens used 25 mm deformed bars with differing shear reinforcement ratios. SP13 of the fourth batch used 10 mm deformed bars for stirrups, while SP14 and SP15 of the fourth batch used 6 mm deformed bars for stirrups. The longitudinal reinforcements in the piers were extended into

Download English Version:

## https://daneshyari.com/en/article/1455724

Download Persian Version:

https://daneshyari.com/article/1455724

Daneshyari.com