
A speciation solver for cement paste modeling and the semismooth
Newton method

Fabien Georget a,⁎, Jean H. Prévost a, Robert J. Vanderbei b

a Princeton University, Department of Civil and Environmental Engineering, Princeton NJ08544, USA
b Princeton University, Department of Operations Research and Financial Engineering, NJ08544, USA

a b s t r a c ta r t i c l e i n f o

Article history:
Received 15 May 2014
Accepted 6 November 2014
Available online 26 November 2014

Keywords:
Thermodynamic calculation (B)
Cement paste (D)
Modeling (E)
Speciation

The mineral assemblage of a cement paste may vary considerably with its environment. In addition, the water
content of a cement paste is relatively low and the ionic strength of the interstitial solution is often high. These
conditions are extreme conditions with respect to the common assumptions made in speciation problem. Fur-
thermore the common trial and error algorithm to find the phase assemblage does not provide any guarantee
of convergence.We propose a speciation solver based on a semismooth Newtonmethod adapted to the thermo-
dynamic modeling of cement paste. The strong theoretical properties associated with these methods offer prac-
tical advantages. Results of numerical experiments indicate that the algorithm is reliable, robust, and efficient.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

To mitigate the environmental impact of the cement industry,
cement manufacturers add by-products of other industries (such as
fly-ash, blast-furnace slag, pozzolanic materials, …) into their products
[1]. The sustainability goal may be achieved only if one can predict the
long term properties of the concrete and mortars made with these
binders. However predicting these properties is a challenging task. Lab
experiments cannot fairly represent the condition of a 50–100 year pro-
cess. In addition, these materials are used, or intended for use, in many
extreme conditions such as deep oil well casing [2], nuclear waste stor-
age [3], or thinner and taller structures. Reactive transport modeling is a
simulation tool to predict these long-term properties [4,5]. Reactive
transport is a well-established framework to solve problems where
chemical reactions and transport phenomena are coupled. However
many difficulties remain. They can be modeling questions (transport
coefficient predictions, phases and composition of the phases, …) or
numerical issues (how to couple models, how to obtain a reliable
answer, …). In this work we focus on the numerical issues associated
with the speciation problem which addresses the issue of finding the
equilibrium state of a chemical system. This problem is at the core of
the reactive transport framework [6,7]. However, its application to
cement science is not straightforward since cement paste presents
three particularities. First, water is not in huge excess as commonly as-
sumed [8]. Then, the ionic strength is usually high and the non-ideality
of the solution has to be taken into account [1]. Finally, the cement paste

may contain many minerals and the phase assemblage varies greatly
with the formulation of the cement [9,10]. Themineral problem is com-
monly solved by a trial and error process to determine the minerals
present in the system [7,11]. This procedure is unsatisfactory since
there is no guarantee of its success. S. Kräutle [12] proposed to solve
this problem using the mathematics of the complementarity problems.
Following this approach, we propose a speciation solver based on a
semismooth Newton method to solve the mixed complementarity
problem. Our work differs from the previous study of S. Kräutle [12]
on two main points: the water conservation equation and the non-
ideality of the solution are considered. Several solving strategies are pre-
sented and compared. This paper is the opportunity to present to the
cement community the complementarity problem and the semismooth
Newton method. These two mathematical tools have been recently de-
veloped and may be used in many different settings [13]. For instance,
Marchand et al. used it to take into account the appearance or disap-
pearance of the gas phase in a multiphase flow [14].

The first section of this paper describes the speciation model. Then
we discuss different strategies to solve this problem and explain our
algorithm based on the semismooth Newton method. The last section
presents some numerical results based on thermodynamical modeling
of cement.We show that the semismooth approach is justified and per-
forms well.

2. The speciation problem

2.1. A purely aqueous system

Given an initial composition of a system, a speciation solver finds
the composition at equilibrium. Two main schools exist to solve this
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problem (for an historical review see [7]). The stoichiometric
approach is based on the equilibrium constant [11,15,16], and the
non-stoichiometric approach minimizes the Gibbs free-energy
[17–20]. These two approaches are theoretically equivalent [21]
since the equilibrium constants are an expression of the minimum
of the Gibbs free energy for a given reaction. However, each formula-
tion and implementation may have its own feature. In this work, we
focus on the stoichiometric method. This choice was made because
the extension of the stoichiometric method to reactive transport is
straightforward and well established [6,22]. Moreover it is consid-
ered faster [19] and easier to implement [7]. The higher flexibility
usually provided by the non-stoichiometric approach [19,20] is not
required in this study since we focus on a very specific system: a sat-
urated cement paste. However the complementarity approach may
be transferable to the other method since the same phase selection
problem may occur depending on the formulation.

We first consider a solution without minerals to introduce the gen-
eral framework and the notations. LetNs denote the number of aqueous
species in equilibrium in an aqueous solution. The equilibrium state is
defined with respect to Nr linearly independent chemical reactions [6,
23]. These reactions determine a set of Nc = Ns − Nr independent com-
ponents called the basis. By convention, water, the solvent, is the first
component of this basis. This assumes that liquid water is always pres-
ent in the chemical system. This is not a restriction since it is also a
modeling assumption for reactive transport in concrete. At the excep-
tion of fire or oven drying, most of the durability model always assumes
an aqueous solution. It is required for the heterogeneous precipitation/
dissolution of solid phases and oxidation of the reinforcement bars [9].
The other components of the basis are also taken as real aqueous species
since it is easier to obtain meaningful physical result [7]. The chemical
reactions can be written as the decomposition of the remaining Nr

species over the basis:

Aj⇌ν jwH2Ol þ
XNc

i¼2

ν jiAi; j ¼ 1;…;Nr ; ð1Þ

where Ak denotes the label of species k, and νji is the stoichiometric co-
efficient of component i for reaction j. These stoichiometric coefficients
can be negative and the corresponding component is thus a reactant. A
system written in this form is said to be in the canonical form [6]. The
components are chosen to be real species instead of the element as it
is commonly done in the field. It is important, especially for reactive
transport, to keep the mathematical problem close to the physical
problem in order to easily detect any incoherence.

Each reaction is accompanied by a law of mass action which
expresses the equilibrium condition

K j ¼
∏Nc

i¼2a
ν ji

i

a j
; j ¼ 1;…;Nr ; ð2Þ

where ak is the activity coefficient for species k. As commonly assumed,
the activity of water is 1.0. For aqueous species, ak = γkmk, wheremk is
the molality (mol/kg w) and γk is the activity coefficient, which repre-
sents the effect of the non-ideality of the solution. It is given by an
extended Debye Hückel law [1,24]

γk ¼ − Az2k
ffiffi
I

p

1þ Ba
�

k

ffiffi
I

p þ b
�

kI ; k ¼ 2;…;Nc;Nc þ 1;…;Nc þ Nr ; ð3Þ

where I is the ionic strength,

I ¼
XNcþNr

k¼2

mkz
2
k : ð4Þ

The ionic strength is a measure of an equivalent concentration of
charge in the system. A and B are constants for a given temperature
(A=0.5092 and B=0.3823 at T=25 °C [7]) and a

�

k and ḃk are defined
species-wise by the database [24].

2.2. Minerals

The minerals are handled differently since they may or may not be
present in the system, depending on their saturation state. Let's consider
a mineral Al and its mole number nl. Its dissolution follows this reaction

Al⇌νlwH2Ol þ
XNc

i¼2

νliAi: ð5Þ

Only the primary aqueous species appears in this expression be-
cause the canonical form is used [6]. The saturation state of the mineral
is defined as

SIl ¼
∏Nc

i¼2a
νli
i

Km
; ð6Þ

where Km is the equilibrium constant for decomposition of the mineral
over the basis (Reaction (5)). If needed, the modeler may add the con-
tribution of the water activity or the mineral activities (to model solid
solutions) to the saturation index [7,25]. Four distinct situations are
possible

1. SIl b 1 and nl N 0 the mineral is undersaturated and will dissolve.
2. SIl b 1 and nl = 0 the mineral is undersaturated and will not

precipitate.
3. SIl N 1 the mineral is oversaturated and will precipitate.
4. SIl = 1 the mineral is at equilibrium with the solution.

Only cases 2 and 4 are at equilibrium. Let nl denote themole number
of the mineral l. These two situations may be summarized as a comple-
mentarity condition [12,13]

nl≥0; − log SIlð Þ≥0; and � nl log SIlð Þ ¼ 0: ð7Þ

This condition states that either the mineral is present and at equi-
librium (nl ≥ 0, and SIl = 1) or the mineral is not present, thus under-
saturated (nl = 0, and SIl ≤ 1). If Nmin minerals are allowed to
precipitate in the system, one has Nr + Nmin equilibrium conditions.
The remaining Nc equations are given by the mass conservation. The
logarithm version of the condition has been chosen for numerical rea-
sons. Unless explicitly mentioned, the logarithm is the logarithm base
ten as commonly used in aqueous chemistry problems. Ω = log(SIl) is
commonly called the saturation index in the literature.

2.3. Mass conservation

The mass conservation equations constrain the quantity of each
component throughout the computation [7,11]. The conservation equa-
tion for water is

Tw ¼ mw
1
Mw

þ
XNr

j¼1

ν jwmj

0
@

1
Aþ

XNmin

l¼1

νlwnl; ð8Þ

wheremw is themass of water (kgw) andMw is themolarmass ofwater.
Tw is the so-called Total concentration (in mol). An explanation of the
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