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The nucleation and growth process is known to control the kinetics of many important phase transformation
processes. However, models of this process are often applied to systems, such as cements, which are different
from the ones for which the models were originally developed. The applicability of the assumptions used in
the development of these models to such systems has been questioned. One of the most common assump-
tions in nucleation and growth models is that the impingement between growing nuclei is proportional to
the fraction of the untransformed volume. Through numerical simulations, this study investigates the validity
of this assumption for various systems, including multiphase systems, different dimensionalities of growth
and nucleation on boundaries of spherical particles. It is shown that although in some cases the models
can be easily adapted for use in more complex systems, other systems are too complicated to be accurately
represented by this simple rule.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The nucleation and growth process is known to control the kinetics
of several phase transformation processes from the decomposition of
austenite to the hydration of cements [1,2]. Various models of nucle-
ation and growth have been developed to predict the growth of systems
where this process is known to control the kinetics. The Johnson–Mehl–
Avrami–Kolmogorov equation [3–7], more commonly known as the
JMAK or simply the Avrami equation is one of the most commonly
used models for such systems. It models the growth of randomly
distributed nuclei that grow at a constant rate, eventually impinging
with each other and filling the entire system. A simplified form of the
Avrami equation is shown in Eq. (1).

− ln 1−Vð Þ ¼ ktn ð1Þ

In this equation, V is the fraction of the volume transformed, k is a
constant that depends on the rate of nucleation and growth, and t is
time. For processes where growth is the rate-controlling step, the
parameter n can be calculated as the sum of two other parameters:
P, the dimensionality of the growth, and Q, which is 1 for processes
that have a constant rate of nucleation and 0 for processes that have
a single nucleation event.

Cahn developed an equation (Eq. (2)) based on similar principles,
for systems where nucleation takes place on a surface rather than at
random locations in the available space [8].
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In this equation, S is the surface area of the substrate per unit
volume, N is the rate of production of nuclei, G is the rate of growth
and y is a dummy variable. Various corrections and modifications
for these models (e.g. [9]) are available in the literature.

Nucleation andgrowthmodelswere initially applied to cementitious
materials because of the similarity of the reaction kinetics with the
hydration kinetics observed in Portland cements [10]. Results from fits
of nucleation and growth equations are often used to understand the
hydration of cement and to compare various systems [11–13]. However,
since these equations were developed for systems that differ signifi-
cantly from cementitious systems, the applicability of the simplifica-
tions and assumptions made in the derivation of these equations to
cementitious systems can be questioned.

These simplifications may range from assumptions regarding the
shape and location of the nuclei to the interaction between different
nuclei as they grow together and compete for the same space. This
article focuses on the assumption that the incremental impingements
between the particles depend linearly on the fraction of space available
for growth. This assumption is used in most nucleation and growth
equations and although it is seen to work well in relatively simple sys-
tems, its applicability to more complex systems is not known. The basis
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of this assumption and its implications on the equations are discussed in
Section 2 of this article. In Section 3, the applicability of this assumption
to various complex systems is examined using numerical simulations.

2. Rule of impingement in nucleation and growth models

Most nucleation and growth equations including the Avrami [5]
and Cahn [8] equations are based on the assumption that either the
number or the rate of production of growing nuclei per unit free
volume is constant with time. As in these processes, growth is consid-
ered to be the rate controllingprocess and therefore the slowest process,
the rate of growth of individual nuclei is assumed to be proportional to
the surface available for growth on that nucleus throughout the trans-
formation process.

As growth occurs, the size and therefore the surface area of the
nuclei increase, leading to an increase in the rate of phase transforma-
tion. However, as the process progresses, impingements between the
growing nuclei continue to increase, leading to a reduction in the rate
of growth. This leads to bell-shaped rate curves and sigmoidal phase
transformation curves characteristic of nucleation and growth
processes. In order to satisfactorily model this process, any equation
must model both the processes of growth and impingement correctly.
While growth is relatively easy to model and can be written on the
basis of its shape and rate, the impingements are harder to calculate.
Based on the assumption that the probability of impingement
increases with the fraction of the volume that has already been
transformed, it is generally considered that the incremental impinge-
ments are linearly related to the fraction of transformed volume.

In order to use this assumption, the total volume of all nuclei in
the system, ignoring all impingements is first calculated. This volume,
V⁎, is generally known as the extended volume. For a set of N spheres
in a unit volume, with radii growing at the rate of G unit lengths per
unit time, at time t from the moment all the spheres were produced,
this can be written as:

V� ¼ 4
3
NπG3t3: ð3Þ

If V is the real total volume of all nuclei after correcting for
impingements, it is assumed that the fraction of the incremental
extended volume that is lost to impingements is equal to the fraction
of the total volume that has already transformed. This assumption is
explained in Eq. (4).

dV
dV� ¼ 1−Vð Þ ð4Þ

Eq. (4) can be integrated to obtain Eq. (5) below.
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It can be seen that the assumption discussed above is the source of
the exponential that is seen in both Avrami and Cahn equations. The
Cahn equation (Eq. (2)) uses this exponential twice, first to account
for the impingements between the nuclei growing on the same bound-
ary and then for impingements with nuclei growing on different
boundaries.

In the following sections, the applicability of the assumption in
Eq. (4) is tested by comparing predictions from equations using this
assumption to results from numerical simulations.

3. Numerical simulations of growths

Simulations of spherical and acicular growthswere carried out using
a mixture of what are known as the vector and discrete approaches. In
the vector approach, the elements in the simulation are stored as
geometrical shapeswith known centroids and dimensions and overlaps
between elements are calculated using simple rules of geometry. Due
to the time consuming nature of these calculations for other shapes,
the vector approach is generally limited to spheres. In the discrete
approach, the computational volume is divided into smaller elements,

Fig. 1. Three-dimensional images of the simulated microstructures at approximately 20% transformation for acicular and spherical particles.

Table 1
Parameters used in simulations of needles and spheres nucleating randomly in space.

Needles
(alone)

Spheres
(alone)

Needles
(with
spheres)

Spheres
(with
needles)

Length of computational volume
(arbitrary unit length)

100 100 100

Resolution (arbitrary unit length) 0.05 – 0.05
Rate of nucleation (number
per unit time per unit volume)

1×10−5 1×10−2 9×10−5 1×10−5

Rate of growth (unit length per
unit time)

2 0.02 1 0.1

Initial radius (unit length) 1 0 1 0
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