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The setting of cement paste is widely understood to be caused by percolation of the links that are created by
overlap of hydration products on the surfaces of reacting grains of clinker. Percolation theory predicts that
the elastic modulus will increase with a certain functional form, but few attempts have been made to dem-
onstrate this behavior quantitatively. We discuss the appropriate variables to use for this test of the theory,
and show that the percolation probability is proportional to time only over a narrow time interval. We com-
pare the measured and predicted degree of hydration at the percolation threshold, and show that the hard-
core/soft-shell model strongly over-estimates the amount of hydration at the setting point. The discrepancy
is attributed to agglomeration of particles in the paste, which reduces the amount of hydration needed to link

the particles into an elastic network.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The setting of cement paste is generally understood to be a perco-
lation process in which the hydration products that form on the sur-
face of clinker particles intersect, leading to the formation of clusters
that eventually join into a continuous elastic network. The percola-
tion of the solid and pore phases has been investigated using numer-
ical simulations, the earliest of which was by Bentz and Garboczi,
using CEMHYD [1]. That paper predicted a high degree of hydration
at the percolation threshold, but later work produced lower, more re-
alistic, values [2]; the difference apparently resulted from increasing
the spatial resolution used in the simulation [3]. Similar studies
have been done using HYMOSTRUC to predict the fraction of con-
nected solids [4]. The connection between the percolation of solids
and the rise in elastic modulus has also been examined by comparing
various measures of rigidity, such as the Vicat test or sound velocity,
with the degree of connectivity simulated with CEMHYD [5-7] or
HYMOSTRUC [4,8]. Only a few studies have tried to quantify the
change in properties near the setting point in terms of percolation
theory, but each of those analyses has defects that will be discussed.

The purpose of this paper is to re-examine the use of percolation the-
ory for interpreting the setting behavior of cement paste. The analysis
will be demonstrated by using data for the ultrasonic pulse velocity
and chemical shrinkage obtained in an earlier study [9]. We will then
compare the observed threshold to the prediction of the hard-core/
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soft-shell (HCSS) percolation model developed by Torquato et al. [10,
Ch. 10 of ref. 11], which is particularly relevant to setting of cement paste.

2. Percolation theory
2.1. Lattice and continuum percolation

In its simplest form, percolation theory describes the growth of
clusters as particles are placed on the sites of a lattice, or as bonds
are established between particles in an array. The probability of filling
a site or forming a bond is p, and it is found that a continuous network
(or, infinite cluster) is formed at a critical value, p = pc, called the per-
colation threshold. In the vicinity of the threshold, many properties
(P) of the network obey power-laws, such as

Pec(p—pc)” (1)

where v is called a critical exponent [12]. The value of pc depends on
the geometry of the lattice, but the critical exponents do not (for sys-
tems in which connections are made only between nearest neighbors
[11]).

It has been demonstrated that the percolation threshold occurs at
a fixed volume fraction of connected particles (or area fraction, in
two-dimensional lattices) [12], which makes it practical to apply per-
colation theory to physical problems. This is called continuum perco-
lation, because it assumes that the percolating objects are placed at
random in continuous space, rather than on a lattice. The critical ex-
ponents for geometrical properties (such as the cluster size distribu-
tion) are identical for continuum and lattice percolation, but the
exponents for transport properties may be different. For example, if
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equal-sized balls of glass and aluminum are randomly mixed, then
the mixture will become electrically conducting when the volume
fraction of aluminum particles, ¢, exceeds ¢c~16 vol.%, which is
the percolation threshold in 3-d [12]. In this case, the conductivity,
o, would vary as

ooc(dp—dbc)" )

where the exponent 7 ~1.6-2 in 3-d (with more recent analyses fa-
voring the higher value) (Ch. 9 of ref. 11[12]). In this example, the
percolating objects are non-overlapping spheres, and they exhibit
the same exponent as a lattice model. Feng et al. [13] showed that
the conductivity exponent for overlapping spheres (what they call
the “inverse Swiss-cheese model”) is also the same as 7 for a lattice
model; however, if random spherical voids are placed in a conducting
continuum, then the exponent rises by 0.5. The change in 7 is attrib-
uted to the influence of very tenuous links that are created when
two voids are close together; in contrast, all of the links in a lattice
model have equal conductivity.

Models for the elastic behavior of percolating systems show a
broad range of critical behavior. For a system described by an isotro-
pic Born potential, in which relative displacements of particles in any
direction generate the same force (a situation called scalar, or isotro-
pic, elasticity), the shear modulus is expected to exhibit the same crit-
ical exponent as o [14,15]; however, under purely central forces, a
higher exponent (on the order of 3.4-4.4 [16]) and a higher percola-
tion threshold are predicted to apply [14]. The Born potential is not
rotationally invariant (i.e., it indicates that interparticle forces result
from a rotation of the whole body), so it is not clear that it provides
a correct representation for any physical system. Lattice models in
which bonds resist both stretching and bending yield a critical expo-
nent of y~4 for the elastic modulus [13], and continuum models
with overlapping spheres are predicted to have y~4.5 in 3-
dimensions.

Some experimental studies show the higher exponents, and some
seem to indicate that there is a crossover from lower to higher values
as the degree of connectivity increases [16]. On the other hand, stud-
ies of gelation of polymers usually indicate an exponent near 2 (e.g.,
[17]), as do studies of the setting of cement [18]. In general, the
form of Eq. (1) applies only in the immediate vicinity of the percola-
tion threshold, because it is only one term in a series expansion, and
there is no way to anticipate its range of applicability a priori. It is
possible that the theoretically predicted exponents only apply in a
very narrow range of p-pc that is not captured by the experiments.
Well beyond the threshold, conventional composite models will
apply, and these predict a nearly parabolic dependence on the volume
fraction of solids [19,20]. A further complication is that hard spheres
exhibit highly nonlinear elastic behavior, as they oppose being
pushed together, but not being pulled apart [21]. In the case of an
HCSS particle, the ratio of resistance to compression versus tension
depends on the thickness of the shell and the magnitude of the strain.

The development of the modulus during setting of cement paste
has been measured by rheometry e.g., [22] and acoustic methods
[22-30]. In most cases, the increase in stiffness was correlated with
the degree of connectivity calculated from a numerical simulation
[4,5,8,27,31]. In one case [31], the calculated amount of connected
solids was used together with an assumed critical exponent of
vy =1.53 to find the constant of proportionality in Eq. (2); however,
the modulus data were compromised by entrapped air in the sample,
as explained in the next section. Another study [8] used a similar pro-
cedure, but applied Eq. (2) to data very far from the percolation
threshold (>36 h of hydration), where the theory is not expected to
apply. Boumiz et al. [18] analyzed acoustic data in terms of percola-
tion theory by assuming that the progress of the percolation process
could be approximated by replacing p—pc with the elapsed time, t-
tc. This is valid if the rate of the process is constant in time, but that

is an assumption that needs to be verified. We will demonstrate in
Section 3 that it only applies in a very small time interval near the
percolation threshold.

2.2. HCSS percolation

The standard version of continuum percolation theory clearly
does not describe the setting of cement, where the volume fraction
of solids is initially well above 16%. The particles in cement are not
located randomly in space: they are dispersed in a liquid and, in the
absence of aggregation,! it would be possible to put more than
60 vol.% particles into a slurry without forming a network. In the
paste, the network forms as a result of the growth of hydration
products on the surfaces of the clinker particles, so the quantity p-
pc must be related to the degree of hydration. This process is de-
scribed by the HCSS model [11], where the hard core represents
the unhydrated clinker and the soft shell represents the layer of hy-
dration products. The shells overlap to link the particles into in-
creasingly large clusters, leading to percolation. Although the
geometry of this model is different from conventional continuum
percolation, the same critical exponents apply [32]. The comparison
of the HCSS model with data for Class H cement will be shown in
Section 4.

3. Acoustic transmission
3.1. Slurries and networks

The velocity, V, of a longitudinal wave in a suspension is given ap-
proximately by [33]

Ky = puV* 3)

where p), and K, are the mean density and bulk modulus of the sus-
pension, which are defined by

Py = dps + (1—d)pp (4)
and

1 ¢ 1—¢

Ku Ks ' K ®)

where ps and pr are the densities, and Ks and K are the bulk moduli,
of the suspended particles and the fluid medium, respectively; the
mean density of a cement paste with w/c=0.35 is py = 2023 kg/m°.
A more rigorous expression, which takes account of the frequency
of the sound and the size of the suspended particles, was derived by
Harker and Temple [33], and is discussed in Appendix 1. The effect
of air on the velocity is shown in Fig. 1, where V drops below the
speed of sound in air (~300 m/s) when the volume fraction of air ex-
ceeds ~0.1%; very similar results are obtained using Eq. (3). The im-
pact of entrapped air was emphasized by Keating et al. [22], and the
effect is clearly illustrated in Fig. 5 of Sant et al. [30]. In contrast, ce-
ment particles suspended in water are predicted to have a minor ef-
fect on V, as shown in Fig. 2. The particles cause some attenuation of
the wave, but the effect is very small compared to that of air, as
shown in Fig. 3.

1 Throughout this paper, we use the term “aggregation” and “aggregate” to describe
loose clusters of cement particles in the paste that have flocculated as a result of attrac-
tive van der Waals forces. These aggregates are to be distinguished from the rigid links
created by overlapping hydration products, which lead to formation of an elastic net-
work at the percolation threshold.
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