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It is well known from experiments that the uniaxial compressive strength of cementitious materials depends
linearly on the degree of hydration, once a critical hydration degree has been surpassed. It is less known about
the microstructural material characteristics which drive this dependence, nor about the nature of the
hydration degree–strength relationship before the aforementioned critical hydration degree is reached. In
order to elucidate the latter issues, we here present a micromechanical explanation for the hydration degree–
strength relationships of cement pastes and mortars covering a large range of compositions: Therefore, we
envision, at a scale of fifteen to twenty microns, a hydrate foam (comprising spherical water and air phases, as
well as needle-shaped hydrate phases oriented isotropically in all space directions), which, at a higher scale of
several hundred microns, acts as a contiguous matrix in which cement grains are embedded as spherical
clinker inclusions. Mortar is represented as a contiguous cement paste matrix with spherical sand grain
inclusions. Failure of the most unfavorably stressed hydrate phase is associated with overall (quasi-brittle)
failure of cement paste or mortar. After careful experimental validation, our modeling approach strongly
suggests that it is the mixture- and hydration degree-dependent load transfer of overall, material sample-
related, uniaxial compressive stress states down to deviatoric stress peaks within the hydrate phases
triggering local failure, which determines the first nonlinear, and then linear dependence of quasi-brittle
strength of cementitious materials on the degree of hydration.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cement paste is the binder for cementitious materials, including
cement mortar, concrete, shotcrete, and soilcrete. Therefore, a reliable
prediction of mechanical properties of cement paste is paramount for
subsequent modeling activities, be they related to material behavior
of cementitious composites or to the structural behavior of engineer-
ing constructions built up from these materials. Challenging applica-
tions even require modeling of the evolution of mechanical properties
of hydrating cementitious materials. This is e.g. the case for drill and
blast tunneling according to the principles of the New Austrian
Tunneling Method (NATM), where shotcrete tunnel shells are loaded
by the inward moving rock, while the material still exhibits rather
small maturities and undergoes the chemical hydration process. This
provides the motivation for the present contribution which focuses
on upscaling elasticity and strength of hydrating cement paste and
mortar, by means of continuum micromechanics.

Within cement paste, hydration products (also called hydrates)
establish the links that lead to a network of connected particles.
The hydrates' non-spherical phase shape (evidenced by microscopic

[1–11] and neutron scattering [12] studies) has been recently shown
to probably play an important role in micromechanics-based
prediction of the quasi-brittle strength evolution of cementitious
materials [13,14]. Thereby, hydration degrees have been estimated
from elasticity measurements by means of a (validated) microelastic
model, and corresponding measured strength values could be
successfully predicted by a microelastic-brittle model with the
hydration degrees as input. In this context, a mixture-invariant
deviatoric hydrate strength was back-calculated. Having, in this way,
gained confidence into themodeling approach, we here aim at amuch
stricter experimental model test: We wish to predict directly
measured hydration-degree–strength relationships for different mix-
tures, with possibly avoiding any back-calculated strength values.
Accordingly, the manuscript is structured as follows:

Section 2 recalls fundamentals of continuum micromechanics. In
Section 3, we introduce a micromechanical representation of cement
paste and mortar (Section 3.1), followed by corresponding mathe-
matical expressions for upscaling elasticity (Section 3.2) and quasi-
brittle strength (Section 3.3). Subsequently, we discuss model input
values (Section 3.4). Therefore, we consider dense hydrate foamswith
very low porosity, from which we identify elastic properties that are,
on average, representative for all hydration products. On this basis,
our micromechanics models predict elasticity and strength of cement
pastes and mortars as functions (i) of hydration degree and (ii) of
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composition in terms of water-to-cement and sand-to-cement mass
ratios (Section 3.5). Section 4 is devoted to model validation, based on
the landmark experiments of Taplin [15] who measured early-age
strength evolutions of hydrating cement pastes with water-to-cement
mass ratios ranging from 0.157 to 0.8, as well as on the equivalence in
strength evolutions of standard mortar defined in EN 196-1 [16] and
of stoichiometric cement paste. In Section 5, we highlight general
model characteristics related to uniaxial compressive strength of
cement paste, as a function of the water-to-cement mass ratio and the
hydration degree. Finally, we compare our elasto-brittle upscaling
scheme with recently published ductile schemes related to the
upscaling of confined hardness measurements on cement pastes
and concretes (Section 6). This includes an estimate for the shear
strength of hydrates.

2. Fundamentals of continuum micromechanics

2.1. Representative volume elements and separation of scales principle

In continuummicromechanics [17–20], amaterial is understood as
a macro-homogeneous, but micro-heterogeneous body filling a
representative volume element (RVE) with characteristic length ℓ.
The separation of scales requirement implies (i) ℓ≫d, where d is
standing for the characteristic length of inhomogeneities within the
RVE, and (ii) ℓ≪D, where D stands for the characteristic lengths of
dimensions or loading of a structure built up by the material defined
on the RVE. Notably, “much smaller (≪)” does not necessarily imply
more than a factor of 4 to 5 between the characteristic length of the
heterogeneities and that of the RVE [21].

In general, the microstructure within one RVE cannot be described
in complete detail. Therefore, quasi-homogeneous subdomains with
known physical quantities (such as volume fractions or elastic
properties) are identified. They are called material phases. Once
their mechanical behavior, their dosages within the RVE, their
characteristic shapes, and themode of their interactions are identified,
the “homogenized”mechanical behavior of the overall material can be
estimated, i.e. the relation betweenhomogeneous deformations acting
on the boundary of the RVE and resulting (average) stresses, or the
ultimate stresses sustainable by the RVE, respectively.

In the framework of multiscale homogenization theory, a material
phase, identified at a specific scale of observation “A”, exhibits a
heterogeneousmicrostructure on a lower scale of observation “B”. The
mechanical behavior of this microheterogeneous phase can be
estimated by that of an RVE with a characteristic length being smaller
than or equal to the characteristic length of the aforementioned phase,
i.e. that of inhomogeneities identified on observation scale “A”, see,
e.g. [22].

2.2. Field equations and boundary conditions

Within the volume Ω of an RVE, we consider field equations of
linear elasticity, i.e. generalized Hooke's law accounting for linear
elastic material behavior

σðxÞ = ℂðxÞ : εðxÞ; ð1Þ

static equilibrium conditions (disregarding volume forces)

divσðxÞ = 0; ð2Þ

and linear strain–displacement relations

εðxÞ = 1
2

∇ξ + t∇ξ
� �

; ð3Þ

where x denotes the position vector, σ and ε, respectively, stand for
the second-order tensors of stresses and strains, ℂ for the fourth-

order elastic stiffness tensor, and ξ for the displacement vector. The
boundaries ∂Ω of the RVEs are subjected to linear displacements
corresponding to a second-order strain tensor E, i.e. we prescribe so-
called Hashin boundary conditions [23], also referred to as uniform
strain boundary conditions

ξðxÞ = E⋅x: ð4Þ

2.3. Homogenization of elasticity

The geometric compatibility of the microscopic strain field εðxÞ
with the uniform strain boundary condition (Eq. (4)) implies the
following strain average rule

E =
1
Ω
∫
Ω

εðxÞdV = ∑
p

fpεp; ð5Þ

where p denotes an index running over all phases of the considered
RVE, fp=Ωp/Ω stands for the volume fraction of phase p, and εp for the
second-order tensor of average phase strains defined as

εp =
1
Ωp

∫
Ωp

εðxÞdV ; ð6Þ

where Ωp denotes the subvolume of the RVE occupied by phase p.
Analogously to Eq. (5), macroscopic stresses Σ are set equal to

the spatial average of the equilibrated local stresses σðxÞ inside the
RVE,

Σ =
1
Ω
∫
Ω

σðxÞdV = ∑
p

fpσp; ð7Þ

with σp as the second-order tensor of average phase stresses, defined
by analogy to Eq. (6).

Linearity of the field Eqs. (1)–(3) implies a linear strain con-
centration rule

εp = Ap : E; ð8Þ

with Ap as the fourth-order strain concentration tensor of phase p.
Specification of the elastic constitutive law of phase p

σp = ℂp : εp; ð9Þ

for the strain concentration rule (Eq. (8)) and insertion of the
resulting expression for the phase stresses σp into the stress average
rule (Eq. (7)) delivers a relation between macrostress Σ and
macrostrain E. Comparison of this relation with the macroscopic
elastic law Σ = ℂhom : E allows for identification of the homogenized
elasticity tensor as [17]

ℂhom = ∑
p

fpℂp : Ap: ð10Þ

Knowledge of phase strain concentration tensors Ap opens the door
to scale transitions, i.e. it allows for computing average phase
strains εp from the macroscopically imposed RVE-strain E, see
Eq. (8), and it permits homogenization (upscaling) of phase
stiffnesses ℂp to the homogenized elasticity tensor of the RVE,
ℂ hom, see Eq. (10). As a rule, the concentration tensors Ap are not
known up to analytical precision. Still, they can be estimated based
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