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Micromechanical constitutive models are used to predict the plastic viscosity of self-compacting steel fibre
reinforced concrete (SCFRC) from the measured plastic viscosity of the paste. The concrete is regarded as a
two-phase composite in which the solid phase is suspended in a viscous liquid phase. The liquid matrix
phase consists of cement, water and any viscosity modifying agent (VMA) to which the solids (fine and
coarse aggregates and fibres) are added in succession. The predictions are shown to correlate very well with
available experimental data. Comments are made on the practical usefulness of the predicted plastic
viscosity in simulating the flow of SCFRC.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The rheological study of concrete is of prime importance for the
construction industry because concrete is placed in its plastic state.
This is even more relevant when dealing with a self-compacting
concrete (SCC) [1,2]. However there is as yet no systematic coverage of
this topic in the literature. Part of the reason for thismay be the various
ranges of particle size used in the concrete industry and different
devices used to measure the plastic viscosity [3–5] of the heteroge-
neous concrete mix. The aim of this paper is to develop a
micromechanical basis for determining the plastic viscosity of self-
compacting concretes with or without short steel fibres from the
knowledge of the plastic viscosity of the paste alone. The latter can be
measured with a reasonable degree of confidence, whereas the
measurement of the plastic viscosity of the concrete mix is fraught
with many difficulties and inaccuracies, especially when steel fibres
are present. To overcome these, concrete is regarded as a two-phase
composite — solid and liquid phases in the present paper. The liquid
matrix phase consists of cement, water and any viscosity modifying
agent (VMA). The plastic viscosity of this liquid matrix phase is
assumed to be known. The increase in plastic viscosity due to the
addition of a solid phase (i.e. any cement-replacement materials, fine
and coarse aggregates) to this matrix is predicted from the two-phase
composite model. The model is applied in stages; in the first stage, the
solid phase is the finest solid material which could be the cement-
replacement material in the viscous fluid (paste). In the next stage,
when the second finest solid (it could be fine aggregate) is added, the
composite from the first stage is regarded as the continuous fluid

matrix phase. This procedure is continued until all the solid phase
constituents have been added to make the SCC.

The plastic viscosity of the viscous concrete consisting of the liquid
and solid phases is further increased if steel fibres are added to it. The
volume fraction of steel fibres is usually small, so that the dilute
approximation is sufficient. In order to estimate the effect of the
addition of steel fibres, these are treated by the rigid slender body
approximation in a viscousmedium [6,7]. Themain assumption in this
approximation is that the fibres undergo only a rigid body motion in
the viscous flow, i.e. translation and rotation, but no elastic
deformation. The predictions of this micromechanical approach are
shown to correlate very well with available experimental data. Finally,
comments aremade on the practical usefulness of the predicted plastic
viscosity in simulating the flow of SCFRC. It can be used both at themix
design stage to simulate the flow in a cone or an L-box test and at the
industrial use stage to simulate the flow in the formwork.

2. Plastic viscosity of self-compacting concrete without steel fibres

2.1. SCC as a concentrated suspension of solid particles in a viscous liquid

The SCC consists of solid aggregate particles (solid phase)
suspended in the viscous paste (liquid phase). The particles are
modelled as spheres. The viscous behaviour of the resulting suspen-
sion depends on the volume fraction of the solid phase. At low
concentrations of the solid phase, the plastic viscosity of the
suspension does not change much with the shear rate, so that it is
reasonable to assume that the suspension behaves like a Newtonian
fluid. The behaviour becomes non-Newtonian once the volume
fraction of solids reaches a critical value, roughly equal to ϕm — the
maximum attainable volume concentration which will be defined
later. The other parameters influencing the viscosity of the suspension
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are the shape, size, and distribution of the solid phase particles,
especially at high concentrations.

2.1.1. Low concentration (ϕ<0.1)
A low concentration of solid phase is also called dilute, in the sense

that the particles are sufficiently far apart from one another, so that
the relative motion of the fluid near one particle is unaffected by the
presence of the others and the hydrodynamic interaction of the
particles can be neglected [8]. Einstein (see, e.g. [9]) was the first to
derive the viscosity of a dilute suspension of rigid spheres. He showed
that the addition of second phase to a suspension leads to an increase
in the bulk viscosity proportional to volume fraction of particles

ηr = 1 + ½η�ϕ: ð1Þ

Here, ηr is the relative viscosity i.e. ratio of viscosity of the sus-
pension (mortar or concrete) to that of the liquid phase (cement
paste), ϕ is the volume concentration of particles, and [η] is the
intrinsic viscosity which is a measure of the effect of individual
particles on the viscosity [9]

½η� = lim
ϕ→0

ηr−1
ϕ

: ð2Þ

A value of [η]=2.5 is adopted when the particles are rigid and
packed randomly in a hexagonal arrangement, and the distance
between them compared to the mean particle diameter is large. It is
also important that the movement of the particles is sufficiently slow
so that their kinetic energy can be neglected.

Einstein's equation has been widely used by other researchers in
this field even at higher volume concentrations of particles. Ford [10]
modified Einstein's equation using a binomial expression

ηr = ð1−½η�ϕÞ−1
: ð3Þ

As reported by Utracki [11], Simha modified Einstein's relation to
read ηr=1+2.5f(a1)ϕ, where f(a1) is the so-called shielding factor, by
using a cage model and a reduced volume fraction, ϕ/ϕm, where ϕm is
the maximum packing fraction. In this model each solid spherical
particle of radius a is placed inside a spherical enclosure (cage) of
radius b. A simplified version of the resulting equation for a low
volume concentration can be written as

ηr = 1 + 2:5ϕ 1 +
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: ð4Þ

Based on the Simha calculation for concentrated suspensions,
Thomas arrived at the following relation for dilute suspensions [10]:

ηr = 1 + 2:5ϕ 1 +
25ϕ
4a31

 !
: ð5Þ

For low volume fractions, a1=1.111.

2.1.2. High concentration (0.1<ϕ<ϕm)
At higher volume concentrations of particles, the volume fraction

is not the only parameter that influences the viscosity. It is now
necessary to consider the size and type of particles used and their
hydrodynamic interaction. The general expression of the viscosity can
be written as [10–15]

ηr = 1 + ½η�ϕ + Bϕ2 + Cϕ3 + … ð6Þ

where B (in some references this is called Huggins coefficient) and C
are very sensitive to the structure of suspension. Tables 1 and2 give the

values of constants B and C that have been reported in the literature
[10,15–19].

The variation in the cited values of parameters B and C is the result
of taking into account one or several effects appearing due to the
increase in solid concentration.

Thomas (chapter in [13]) suggested that the C term in Eq. (6)
could be replaced by an exponential term

ηr = 1 + 2:5ϕ + 10:05ϕ2 + 0:00273expð16:6ϕÞ ð7Þ

because the resulting expression fits the experimental data very well
in the range of ϕ=0.15–0.60.

In view of the uncertainties in the parameters B and C, Krieger and
Dougherty [21], and others, have used the concept of maximum
packing fraction, ϕm for a better description of the suspensions. ϕm

corresponds to the situation in which the particles have the minimum
possible separation i.e. the void fraction (porosity) is the least and the
viscosity is infinite. The value is 0.74 for hexagonal closed packing,
0.637 for random hexagonal packing and 0.524 for cubic packing [10].

Krieger and Dougherty [21] proposed a generalized version of
Einstein's equation; they used the maximum packing volume fraction
and intrinsic viscosity parameter to a non-Newtonian suspension of
rigid spheres. Ball and Richmond [12] used the results of Krieger and
Dougherty but simplified their complex mathematics conceptually
based on Einstein's equation. In their formulation, the viscosity of the
suspension increases in two ways; firstly, if the volume fraction of
spherical solid particles increases by dϕ, the spheres already present in
the suspension raise the total viscosity by (1/ϕm)ϕdϕ, where 1/ϕm is
the so-called crowding factor. Therefore, the increment in the viscosity
according to Einstein's equation becomes

dη = ½η�ηdϕ + ϕ=ϕmdη: ð8Þ

Secondly, in the presence of other particles, the volume available
for an additional particle is decreased by (1−ϕ/ϕm) so that the
increment in the total viscosity is

dη = ½η� ηdϕ
1− ϕ

ϕm

: ð9Þ

Combining the two effects (Eqs. (8) and (9)) they reached the
well-known Krieger and Dougherty [21] equation

ηr = 1− ϕ
ϕm

� �−½η�ϕm

ð10Þ

ϕm is strongly dependent on the particle size distribution. Also, the
intrinsic viscosity [η] and ϕm depend upon the shear rate; the former
tends to decrease with increasing shear rate whereas the latter shows
the opposite trend. However [η] and ϕm change in such a way that an
increase in the one leads to a decrease in the other, but the product of

Table 1
Different values for parameter B available in the literature.

Reference [10] [10] [15] [16] [17] [18] [19] [20]

B value 10.05 6.25 4.84 6.2 14.1 7.35 12.6 6

Table 2
Different values for parameter C available in the literature.

Reference [10] [18] [20]

C value 15.7 16.2 35

1210 A. Ghanbari, B.L. Karihaloo / Cement and Concrete Research 39 (2009) 1209–1216



Download English Version:

https://daneshyari.com/en/article/1457246

Download Persian Version:

https://daneshyari.com/article/1457246

Daneshyari.com

https://daneshyari.com/en/article/1457246
https://daneshyari.com/article/1457246
https://daneshyari.com

