

# Available online at www.sciencedirect.com





Cement and Concrete Research 36 (2006) 971-978

# The effect of various slaked limes on the microstructure of a lime-cement-sand mortar

Y. Sébaïbi <sup>a</sup>, R.M. Dheilly <sup>a</sup>, B. Beaudoin <sup>b</sup>, M. Quéneudec <sup>a,\*</sup>

<sup>a</sup> Laboratoire de Technologies Innovantes, Université de Picardie Jules-Verne, I.U.T Département Génie Civil, Avenue des Facultés, 80025 Amiens Cedex 01, France

Received 4 November 2005; accepted 18 December 2005

# Abstract

The present work aims to provide a better understanding of the effect of both the proportions and the characteristics of slaked lime on the microstructure of a lime-cement-sand mortar. Cement (CPA CEM I 52.5) has been replaced by various categories of slaked lime chosen for the diversity of their physico-chemical characteristics.

Cement has been replaced by lime in proportions varying between 0 to 10% of the total binder mass. With very few exceptions, mortars were produced by maintaining the quantity of water constant.

Experimental results show that it is necessary to have a high lime substitution percentage to influence the microstructure of the mortar, except in the case of a lime containing magnesium hydroxide or calcic lime featuring sizeable specific surface area.

The influence of the nature of the substituted lime on the development of the microstructure in the matrix has been examined by SEM observations of the mortar micro porosity.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Slaked lime; Physico-chemical characteristics; Elastic modulus; Microstructure; SEM

### 1. Introduction

Over the past twenty years, many studies have been conducted on improving the physical and mechanical characteristics of mortars by means of adding or substituting mineral fines [1–9]. The underlying purpose of these efforts has been the protection of the environment and the conservation of energy resources, while improving mortar performance.

Even though the relationships between the microstructure and the physical properties of these new mortars have been widely discussed in these studies, it should still be noted that slaked lime has not been used often as a mineral fine.

Until now, very few scientific papers have dealt with mortars made from a mixture of slaked lime and Portland cement. Nevertheless, the research conducted by Sriboonlue and Wallo [10] merits special attention. Their work focused on the influence of

\* Corresponding author. Tel./fax: +33 3 22 53 40 16. E-mail address: michele.tkint@iut.u-picardie.fr (M. Quéneudec). the various components of a lime-cement mortar on both the mortar's mechanical strength and elastic modulus. Within the scope of their study, lime mix proportions were varied during mortar production. Philippi et al. [11] concentrated their study on the lime mortar microstructure with the aim of developing methods to analyse the microstructure of porous materials displaying a wide range of pore sizes. Upon completion of this work, Philippi proposed a three-dimensional model to represent the heterogeneous pore structure of the mortar and went on to study both water retention and humidity transfer using this model [12]. In 1996, Colantuono et al. [13] examined the capillarity phenomenon occurring in porous materials bound by lime-cement mortars. However in none of these studies was the influence of lime on the physical and chemical properties of a lime-cement mortar actually investigated.

Lime—cement mortars have started inciting renewed interest thanks to the prospect of a sizeable market for maintaining and restoring historical buildings. In light of this new development, the study of the influence of the physico-chemical characteristics

<sup>&</sup>lt;sup>b</sup> Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne, Faculté des Sciences Fondamentales et Appliquées, 33 rue Saint Leu, 80039 Amiens Cedex, France

of lime on the evolution of lime-cement-sand mortar microstructure has been undertaken.

To target these objectives, the present work has primarily focused on a Portland cement mortar in which a portion of the cement has been replaced by lime. Mortars were produced according to one of two processes: either holding the quantity of water constant or holding the level of workability constant. In order to better determine the impact of replacing cement by lime on the development of species normally present in mortars, the chemical nature of the substituted lime has also varied.

# 2. Experimental

#### 2.1. Raw materials

# 2.1.1. Slaked limes (Ci)

The slaked limes used in this work are those which were studied by Sébaïbi Y. et al. [14]. The main characteristics of the various limes are outlined below, and presented in Table 1.

The calcium and magnesium hydroxides used herein are pure hydroxides (i.e. of analysis-grade quality); their purities are greater than 98% and 95%, respectively. On a scanning electron micrograph, both  $\text{Ca}(\text{OH})_2$  and  $\text{Mg}(\text{OH})_2$  appear as a cluster of fine platelets measuring up to 10  $\mu$ m in the case of calcium hydroxide, yet whose entanglement makes it impossible to define the exact shape [15].

The industrial limes studied herein (C<sub>1</sub>, C<sub>2</sub> and C<sub>3</sub>) are slaked limes chosen for the diversity of their physico-chemical characteristics.

Table 1
Physico-chemical characteristics of the various limes tested

| Samples                 | Ca(OH) <sub>2</sub> | $Mg(OH)_2$        | $C_1$             | $C_2$           | $C_3$             | $C_4^{\ a}$ |
|-------------------------|---------------------|-------------------|-------------------|-----------------|-------------------|-------------|
| CaO (total)             | 74.2                | 0.1               | 73.5              | 73.9            | 42.3              | 42.1        |
| MgO                     | 0.7                 | 68.2              | 0.4               | 0.6             | 29.8              | 31.5        |
| $Fe_2O_3$               | 0.06                | < 0.01            | 0.1               | 0.3             | 0.1               | 0.03        |
| SiO <sub>2</sub>        | 0.10                | 0.08              | 0.8               | 0.3             | 0.4               | 0.09        |
| $Al_2O_3$               | 0.08                | < 0.01            | 0.1               | 0.1             | 0.1               | 0.05        |
| $SO_3$                  | < 0.01              | < 0.01            | 0.02              | 0.03            | 0.04              | < 0.01      |
| $LI_{1000}$ $\circ_{C}$ | 24.8                | 31.1              | 24.4              | 24.3            | 26.7              | 25.63       |
| Ca(OH) <sub>2</sub> (%) | 97.4 <sup>b</sup>   |                   | 94.4 <sup>b</sup> | 96 <sup>b</sup> | 55.2 <sup>b</sup> | 55          |
| Mg(OH) <sub>2</sub> (%) |                     | 98.5 <sup>b</sup> |                   |                 |                   | 45          |
| S.S.(BET) $(m^2/g)$     | 15.5                | 6.6               | 17.5              | 41.2            | 28.8              | 11.4        |
| Grading distribution    | on                  |                   |                   |                 |                   |             |
| 1 μm                    | 10                  | 11                | 9                 | 5               | 12                | 10          |
| 5 μm                    | 52                  | 37                | 44                | 38              | 58                | 52          |
| 10 μm                   | 69                  | 48                | 68                | 52              | 69                | 66          |
| 20 μm                   | 82                  | 60                | 85                | 65              | 78                | 77          |
| 32 μm                   | 90                  | 71                | 91                | 74              | 84                | 85          |
| 45 μm                   | 95                  | 89                | 94                | 80              | 88                | 93          |
| 63 μm                   | 99.5                | 99.4              | 96                | 85              | 92                | 99          |
| 90 μm                   | 99.9                | 100               | 98                | 90              | 95                | 100         |
| 160 μm                  | 100                 | 100               | 99.9              | 95              | 99.5              | 100         |
| 250 μm                  | 100                 | 100               | 100               | 98              | 100               | 100         |
| 500 μm                  | 100                 | 100               | 100               | 99              | 100               | 100         |

 $<sup>^{\</sup>rm a}$  The sample  $C_4$  is a laboratory-made mix containing pure "analysis-grade" calcium and magnesium hydroxides in the same proportions as those of a hydrated dolomite.

Table 2 Chemical analysis and Bogue composition of the CPA CEM I cement used in mortar production

| CaO  | MgO | $SiO_2$ | $Fe_2O_3$ | $Al_2O_3$ | $SO_3$ | $LI_{1000}$ $^{\circ}C$ | $C_3S$ | $C_2S$ | $C_3A$ | C <sub>4</sub> AF |
|------|-----|---------|-----------|-----------|--------|-------------------------|--------|--------|--------|-------------------|
| 64.8 | 0.8 | 21.3    | 4.3       | 3.7       | 2.7    | 1.2                     | 62.0   | 14.0   | 2.5    | 13.1              |

Limes  $C_1$  and  $C_2$  have been hydrated under atmospheric pressure; their composition and purity are close to those of the pure calcium hydroxide. In the case of  $C_2$ , the tablets exhibit smaller size [15]. The specific surface area of  $C_1$  (17.5 m<sup>2</sup>/g) is close to that of calcium hydroxide (15.5 m<sup>2</sup>/g), while it is not the case for lime  $C_2$ . The specific surface area of this lime (41.2 m<sup>2</sup>/g) is 2.65 times higher than that of  $C_4(OH)_2$ . Lime  $C_3$  has been hydrated under pressurised conditions [16]. This category of lime is a hydrated dolomite that differs from normally hydrated lime by: the presence of a small proportion of non-hydrated oxides (<8%), high plasticity, and a high water-retention capacity (which may be attributed to the small size of the crystals (<1  $\mu$ m)).

Although lime  $C_2$  is constituted of larger size crystals, this lime exhibits a specific surface area greater than those of the other limes. This phenomenon can be related to its more important porous volume [14].

Lime  $C_4$  is a laboratory-made mixture containing the aforementioned pure "analysis-grade" magnesium and calcium hydroxides. These components were mixed in the same proportions as those of a hydrated dolomite (55% Ca(OH)<sub>2</sub> and 45% Mg(OH)<sub>2</sub>).

Limes  $C_3$  and  $C_4$ , whose chemical compositions are similar, appear on the scanning electron analysis as a cluster of fine particles composed of both  $Ca(OH)_2$  and  $Mg(OH)_2$ . In the case of industrial lime  $C_3$ , which has been hydrated under pressure, this cluster appears to be more compact. Even if qualitative analyses were performed, it would be difficult to differentiate the platelets of calcium hydroxide from those of magnesium hydroxide. The specific surface area of lime  $C_3$  is 2.5 times higher than that of  $C_4$  [15].

## 2.1.2. Cement (Ce)

The cement used is CPA CEM I 52.5 (NF P 15-301). This cement was already used for previous works [14]. Its B.E.T specific surface area is 1.66 m<sup>2</sup>/g. Its composition is presented in Table 2. This cement is a sulphate resistant cement. According to some authors this kind of cement can lead to a greater depth of carbonation [17], which could be attractive in the case of a lime–cement binder.

Table 3 W/B ratios as a function of substituted lime when mortars are made by holding workability constant

| Ci/Ci+Ce (%) | Substituted lime    |                     |       |                |                |                |  |
|--------------|---------------------|---------------------|-------|----------------|----------------|----------------|--|
|              | Ca(OH) <sub>2</sub> | Mg(OH) <sub>2</sub> | $C_1$ | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> |  |
| 0            | 0.500               | 0.500               | 0.500 | 0.500          | 0.500          | 0.500          |  |
| 2            | 0.500               | 0.500               | 0.510 | 0.500          | 0.525          | 0.500          |  |
| 5            | 0.530               | 0.525               | 0.550 | 0.525          | 0.575          | 0.525          |  |
| 10           | 0.575               | 0.575               | 0.575 | 0.600          | 0.630          | 0.575          |  |

Ci is the mass of lime and Ce is the cement's mass.

b Value obtained by thermogravimetric analysis and calculated from DTA/TG curves.

# Download English Version:

# https://daneshyari.com/en/article/1457820

Download Persian Version:

https://daneshyari.com/article/1457820

Daneshyari.com