Chemical Engineering Journal 287 (2016) 720-726

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Importance of abiotic hydroxylamine conversion on nitrous oxide emissions during nitritation of reject water

Chemical Enaineerina

Journal

Aina Soler-Jofra^{a,b}, Berber Stevens^a, Maaike Hoekstra^a, Cristian Picioreanu^a, Dmitry Sorokin^{a,c}, Mark C.M. van Loosdrecht^a, Julio Pérez^{a,*}

^a Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands

^b Department of Chemical, Biological and Environmental Engineering, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Spain

^c Winogradsky Institute of Microbiology Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia

HIGHLIGHTS

• Abiotic reaction of NH₂OH with HNO₂ can contribute to N₂O emissions in nitritation.

 \bullet The abiotic N_2O emission was measured at the conditions of sidestream nitritation.

 \bullet Residual NH_2OH concentration was measured in a full scale nitritation reactor.

ARTICLE INFO

Article history: Received 25 September 2015 Received in revised form 13 November 2015 Accepted 21 November 2015 Available online 2 December 2015

Keywords: Abiotic N₂O emissions Ammonium-oxidizing bacteria Partial nitrification Sidestream NH₂OH Chemical reaction

ABSTRACT

The spontaneous abiotic (or chemical) reaction of hydroxylamine (NH₂OH) at low concentrations (<0.4 mg N/L) with free nitrous acid (HNO₂) was investigated at the conditions of partial nitritation of reject water. An abiotic batch reactor test was used to quantitatively assess the kinetics of the nitrous oxide (N₂O) emission. The estimated chemical N₂O emission rate was 0.16 mg N/L/h. In addition, the concentration of NH₂OH in a full scale nitritation reactor, Single reactor High Activity ammonium Removal over Nitrite (SHARON) was measured in the range ca. 0.03–0.11 mg N/L. The presence of NH₂OH in the SHARON reactor together with the abiotic N₂O emissions rate (assessed in the abiotic batch reactor test) points towards a significant contribution of the abiotic N₂O emission in the full scale reactor. An equivalent emission factor (N emitted as N₂O/N oxidized in nitritation) of 1.1% was estimated to be linked to the abiotic pathway, which is around one third of the total measured N₂O emission rate in the SHARON reactor.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hydroxylamine (NH₂OH) is an intermediate in the biological oxidation of ammonia to nitrite by ammonia-oxidizing bacteria (AOB) and in the dissimilatory nitrate reduction (DNRA) pathway. One of the first experimental indications that NH₂OH is an intermediate in nitrification was reported by Lees [1]. By adding NH₂OH at a very low concentration (1.5 μ g N/L) to an aerated *Nitrosomonas* sp. culture, the consumption of NH₂OH in time was measured. At pH of 8.4 and 30 °C, the measured NH₂OH consumption rate was found to be even higher than that of ammonium consumption at the same conditions.

In the past, the extracellular release of NH₂OH during the oxidation of ammonia into nitrite by AOB was considered doubtful [2].

* Corresponding author. E-mail address: j.o.perezcanestro@tudelft.nl (J. Pérez). However, several publications also pointed out that NH₂OH is a measurable intermediate in the bulk liquid of reactors performing either nitritation (oxidation of ammonium into nitrite) or nitrification (oxidation of ammonium into nitrate) [3–7]. The values reported for the NH₂OH concentration are in the range of 0.01–1 mg N/L. Hydroxylamine is not one of the compounds regularly followed in N₂O emission or nitrification studies neither in laboratory scale reactors nor in full scale wastewater treatment plants (WWTPs). Some of these investigations were carried out with the specific goal of clarifying the N₂O emissions pathways, quantification of rates or even setting-up mathematical models for the description of the process (among many others [8–12]). In addition, several mathematical models calibrated with experimental data included NH₂OH as intermediate (for instance Ni et al. [12]), but the measurements were limited to ammonium, nitrite and N₂O, whereas actual NH₂OH concentrations were never measured. Overall, there is a lack of knowledge regarding the formation

of NH₂OH in WWTP or laboratory reactors performing nitritation or nitrification.

Hydroxylamine and nitrite are known to be precursors for abiotic (or spontaneous) production of nitric oxide (NO) and nitrous oxide (N_2O) (see a review by Schreiber et al. [13]). Therefore, the presence of significant concentrations of NH₂OH and/or nitrite was postulated as potential environment for the chemical production of NO and N₂O in wastewater or natural aquatic ecosystems [13,14]. The possible chemical reactions of NH₂OH and nitrite to produce nitrogen oxides are numerous and with a rather complex chemistry. Moreover, the rates can be accelerated by the presence of trace metals [13,15]. The still reduced knowledge on the potential contribution of abiotic pathways on the overall N₂O emissions from nitrite, ammonia and NH2OH during wastewater treatment has been previously emphasized [13–19]. Schreiber et al. [13] highlighted a few relevant environments in which the chemical production of N₂O could manifest in WWTP, and cited as main example the nitritation of reject water in two-stage nitrogen removal systems (e.g. the Single reactor High Activity ammonium Removal over Nitrite, SHARON rector [20]). In particular, the chemical reaction between the NH₂OH and nitrite (nitrosation of NH₂OH) has been reported to produce N₂O, with overall reaction (1) [21]:

$$NH_2OH + HNO_2 \rightarrow N_2O + 2H_2O \tag{1}$$

The precursor of N₂O in reaction 1 is known to be the hyponitrous acid ($H_2N_2O_2$) – the dimer of HNO [21]. More recently, the chemical production of N₂O from NH₂OH and nitrite has also been investigated through site-specific ¹⁵N isotopic signatures [19]. However, Heil et al. [19] did not assess the kinetics of N₂O emissions, but rather focused on the isotopic signature of this reaction. They found that microbial and abiotic processes share the same intermediate steps, and therefore it was not possible to use the isotopic signature to assess the contribution of either biological or abiotic N₂O emissions.

The occurrence of reaction 1 during biological nitritation has been already highlighted by Harper et al. [15]. These researchers firstly analyzed the abiotic formation of N_2O and secondly used model fitting in a biological reactor to assess the contribution of the abiotic pathway to the overall N_2O production.

In this study, we investigated the chemical reaction of NH₂OH (at low concentrations) with nitrite and its potential contribution to N₂O emissions in wastewater treatment plants. To this end, some of the experiments targeted specific conditions found in nitritation reactors in two-stage nitrogen removal process applied to reject water (SHARON). This process was selected because: (i) there, the microbial growth rate of AOB is close to the maximum specific growth rate triggering NH₂OH release into the bulk liquid [4], and (ii) the high nitrite concentrations. We complemented this study with NH₂OH measurements in the full scale SHARON reactor in Rotterdam (The Netherlands), to assess the abiotic N₂O emission pathway in that type of nitrogen-converting bioreactors.

2. Materials and methods

2.1. Analysis of NH₂OH concentration

The NH₂OH concentration was measured following spectrophotometric procedure [23]: 1 mL of the sample containing hydroxylamine (range 0.00–0.25 μ M of hydroxylamine) was added to 1 mL of 0.05 M phosphate buffer, 0.80 mL of demineralized water, 0.2 mL of 12 wt% trichloroacetic acid, 1 mL of 1% 8-quinolinol (w/v) and 1 mL of 1 M Na₂CO₃. After shaking vigorously the mixture was heated 1 min at 100 °C in a water bath and cooled for 15 min before measuring absorbance at 705 nm (Novaspec III Amersham Biosciences). A blank was prepared by replacing the sample volume by the same volume of demineralized water.

For the samples withdrawn from the SHARON reactor, a variation of the protocol described was used, since no demineralized water was added, and 1.8 mL of sample were used instead. This was done to increase the absolute value of absorbance of samples. For more details regarding the sampling procedure in the SHARON reactor, see below the specific Section 2.4.

2.2. Small-scale reaction tests

2.2.1. Sampling and storage

The NH₂OH reactivity was tested under different conditions in 2 mL Eppendorf tubes. For each test 1.6 mL of medium was mixed with 0.2 mL of a 3.5 mg N/L hydroxylamine solution. Afterwards, 0.2 mL of 10% sulfamic acid was added in some of the tests, as far as it is reacting 1:1 stoichiometrically with nitrite to form N₂, H₂SO₄ and H₂O [24]. The NH₂OH concentration was then immediately measured in samples with or without sulfamic acid. After keeping different aliquots overnight at room temperature, 4 °C and -20 °C, with and without sulfamic acid, NH₂OH concentration was also measured.

The mineral medium used contained: 0.330 g/L NaNO₂, 0.344 g/L (NH₄)₂SO₄, 5 mL/L of an iron solution containing 9.14 g FeSO₄ and 5 g EDTA in 1 L of demineralized water, 1.25 mL/L of a magnesium solution containing 160 g MgSO₄·7H₂O in 1 L of demineralized water, 0.625 mL/L of a calcium solution containing 240 g CaCl₂·2H₂O in 1 L of demineralized water, and 2.5 mL/L of a trace element solution containing 15 g EDTA, 0.43 g ZnSO_4 ·7H₂O, 0.24 g CoCl_2 ·6H₂O, 1.0 g MnCl_2 ·4H₂O, 0.25 g CuSO_4 ·5H₂O, $0.22 \text{ g (NH₄)Mo_7O_24$ ·4H₂O, 0.20 g NiCl_2 ·6H₂O, 0.10 g NaSeO_4 , 0.014 g H_3BO_3 , 0.050 g NaWO_4 ·2H₂O per liter of Mili-Q water and pH adjusted to 6 with NaOH.

2.2.2. Preliminary characterization of the reaction kinetics

The NH₂OH depletion rates were measured in a set of 2 mL Eppendorf tubes at room temperature (approximately 21 °C). The above mentioned medium was added to a set of 6–7 Eppendorf tubes, then NH₂OH was added to all of them to reach a final volume of 1.8 mL. Finally 0.2 mL of 10% sulfamic acid was added to each Eppendorf tube at a different time, in order to stop the reaction (by removing nitrite). Finally, the NH₂OH concentration remaining after different reaction times was measured. For the sample at time zero, sulfamic acid was added first followed by the medium, in order to remove nitrite before NH₂OH addition. The pH was measured before adding HA using a pH meter (827 pH lab Methrom Swiss made).

2.3. Reactor set up for the chemical reaction and gas analysis

Experiments were conducted in a 1.5 L lab-scale glass fermenter, equipped with a Teflon-coated magnetic stirrer. Air was added using a gas-diffuser with the flow rates 0.316 and $0.214 \text{ L} \text{ min}^{-1}$ for batch reactor tests 1 and 2, respectively. Offgas was measured on-line (Servomex 4900 infrared gas analyzer), allowing to follow continuously oxygen, carbon dioxide, N₂O and NO. Temperature was controlled with an external jacket and pH was followed, using a pH meter in samples without sulfamic acid, but not controlled, because it was stable.

Reaction mixture contained 1.9 mL and 3.8 mL of trace element and iron solutions, respectively, both described previously. 150 mL of a 3.5 mg N/L NH₂OH solution was added to demineralized water containing the desired amount of metals, reaching a total liquid volume of 1.5 L, finally solid NaNO₂ was added to reach desired concentration in each test (Table 1). Samples were withdrawn from the reactor at different times using a syringe and immediately Download English Version:

https://daneshyari.com/en/article/145917

Download Persian Version:

https://daneshyari.com/article/145917

Daneshyari.com