

Available online at www.sciencedirect.com

ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 42 (2016) 4491–4497

www.elsevier.com/locate/ceramint

Significance of sensitization process in electroless deposition of Ni on nanosized Al₂O₃ powders

J.N. Pang, S.W. Jiang*, H. Lin, Z.Q. Wang

Department of Materials Engineering, Key laboratory of Liaoning Provincial College for New Materials and Material Modification, Dalian Polytechnic University, Dalian, 116034, China

Received 27 September 2015; received in revised form 24 November 2015; accepted 25 November 2015 Available online 1 December 2015

Abstract

The electroless deposition of Ni on nanosized α -Al₂O₃ powders of about 150 nm diameter has been studied by employing SnCl₂ sensitization and PdCl₂ activation approach. The bath for electroless deposition was prepared by using NiCl₂ · 6H₂O, C₆H₅NaO₇ · H₂O, NH₄Cl and NaH₂PO₂ · H₂O, and the deposition was carried out at a bath temperature of 70 °C with a pH value of 8.5. The morphology, microstructure and phase structure of Ni-coated α -Al₂O₃ nanopowders were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffractometry (XRD), respectively. It is found that, the sensitization process followed by repetitive resining greatly affects the morphology of Ni deposited in the form of nanoparticles onto the ultrafine alumina particles, different from the conventional continuous electroless film/coating deposited on coarser particles. The resining of the SnCl₂ sensitized ultrafine α -Al₂O₃ particles prior to PdCl₂ activation process leads to varied amount of deposited Ni particles with diameters of 50–80 nm on the Al₂O₃. It is revealed that, subsequent reduction process (activation) from Pd²⁺ to Pd is linked to the original sites of Sn²⁺ by simultaneous oxidation process from Sn²⁺ to Sn⁴⁺ on the previously sensitized α -Al₂O₃ nanopowders. Consequently, the form of deposited Ni correlated closely to the surface distribution of reduced Pd which may be continuous or discrete determined predominantly by the density of adsorbed Sn²⁺ on the powders during sensitization process. It demonstrates a possibility of depositing different distribution structures of metals on nanosized α -Al₂O₃ powders through controlling SnCl₂ sensitization process.

© 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Electroless deposition; Ni nanoparticles; Al₂O₃; Sensitization; Activation

1. Introduction

Ni–Al₂O₃ composite coatings have been studied widely as a promising protective material for wear and corrosion resistance, where Al₂O₃ particles in the metal matrix composites (MMCs) have been considered as one of the remarkable reinforced second phases due to the high hardness and superior chemical stability [1–3]. By far, many studies have been focusing on achieving high concentration and good dispersion structure of reinforced particles in MMCs to obtain their high performance [4–6]. Good wetting behaviors between particles and metal matrix are also desired to optimize the composite

*Corresponding author. Tel.: +86 15898196052.

E-mail address: swjiang@dlpu.edu.cn (S.W. Jiang).

structure and properties [4]. One effective way to achieve this is to use ceramic powders covered with a metal layer as a starting material for preparation of MMCs. Owing to the isolation effect of the metal layer on the particle surface, formation of highly concentrated and well-dispersed particles distribution structures in the metal matrix will be facilitated for various available composite bulk or coating preparation techniques such as plasma spark sintering, thermal spraying, laser cladding, etc., to achieve MMCs with desired performance [7,8].

Electroless deposition is widely used to fabricate metallic coatings on various materials due to its advantage in high deposition rate, simple operation and capability of mass production [9–12]. Uysal et al. [10] prepared continuous and uniform Ni layers on SiC particles by alkaline electroless

deposition, and the layer thickness of Ni was between 100 and 300 nm. Xu et al. [13] reported preparation of nickel-coated graphite by electroless deposition under mechanical or ultrasonic agitation, and found that ultrasonic agitation could promote nucleation and deposition of nickel. Michalski et al. [14] reported the electroless deposition of Ni on coarse and ultrafine Al_2O_3 powders, respectively. They found that thin Ni layers consisting of loosely agglomerated nanoparticles were chemically deposited on the surface of the coarse Al_2O_3 powders; meanwhile the sintering temperature of composite powders was about 200 °C lower than that of the pure Al_2O_3 powders. However, for ultrafine Al_2O_3 powders, no Ni could be observed on the particles.

Fine ceramic powders, especially those in nanosize, have been recognized as effective strengthening second phases for MMCs [15,16]. However, successful electroless deposition of metals on ultrafine powders was rarely reported. The electroless deposition of metals on ultrafine powders may be very different from that on coarse powders due to that ultrafine powders have high specific surface area with tendency of agglomeration by van der Wals forces between them. In this work, the electroless deposition of Ni on nanosized α -Al₂O₃ powders has been studied through a traditional method at different sensitization conditions. The influence of sensitization on the Ni deposition were discussed for understanding the mechanisms of electroless nickel deposition on ultrafine α -Al₂O₃ particles.

2. Experimental

2.1. Raw materials

Nanosized α -Al₂O₃ powders with an average size of 150 nm and purity of 99.99% were used for the experiment. Typical parameters of the α -Al₂O₃ nanopowders are listed in Table 1.

2.2. Experimental procedure

The electroless plating bath and the deposition parameters are shown in Table 2. A conventional nickel deposition method with SnCl₂ sensitization and PdCl₂ activation was employed in this work [10,17]. The bath of electroless nickel is composed typically of a source of nickel ions, a reducing agent, a complexing agent and a stabilizer or inhibitor [18,19]. NiCl₂ is chosen as the source of nickel ions, while hypophosphite as the reducing agent in the bath. In the sensitization process, Sn²⁺ ions are absorbed on the surface of the Al₂O₃ powders, which could facilitate attracting of Pd²⁺ ions onto

Table 1 Characteristics of the Al_2O_3 powders used in this experiment.

Characteristics		
Crystallinity	α-Al ₂ O ₃	
Purity	99.99%	
Mean particle size Specific surface area	150 nm 12.54 m ² /g	

Table 2 Composition of the electroless Ni plating bath and the deposition parameters.

Chemical composition and operating conditions		
NiCl ₂ · 6H ₂ O	45 g/L	
$Na_3C_6H_5O_7 \cdot 2H_2O$	120 g/L	
NH ₄ Cl	40 g/L	
$NaH_2PO_2 \cdot H_2O$	8 g/L	
pH	8.5	
Temperature	70 °C	
Stirring speed	250 r/min	

Table 3
Sensitization conditions of electroless Ni depositied samples.

Samples	Powder weight (g)	Rinse conditions after SnCl ₂ sensitization
A	0.05	5 times
B	0.1	3 times
C	0.1	1 time

the surface of particles. Then the reactions of Eq. (1) may happen, where the Pd^{2+} is reduced to Pd^{0} , while the Sn^{2+} is oxidized to Sn^{4+} . When the activated α -Al₂O₃ powders are added to the bath, the reactions of Eqs. (2) and (3) will happen, where the Pd^{0} acts as catalyst [10]. The Ni^{2+} ions will be reduced to metallic nickel and the metallic Pd^{0} oxidized to Pd^{2+} during the subsequent Ni deposition process. As the reaction continues, the metallic nickel could be deposited and become denser and thicker on the α -Al₂O₃ powders.

$$Sn^{2+} + Pd^{2+} \rightarrow Sn^{4+} + Pd^{0}$$
 (1)

$$Ni^{2+} + H_2PO_2^- + H_2O \rightarrow H_2PO_3^- + H_2 + Ni^0 \downarrow$$
 (2)

$$Pd + Ni^{2+} \rightarrow Pd^{2+} + Ni \tag{3}$$

In this experiment, in addition to adopting the SnCl₂ sensitization and PdCl₂ activation process in Ref. [10], rinsing of the sensitized Al₂O₃ powders was intentionally applied for the Ni electroless deposition. Firstly, the Al₂O₃ powders were immersed in acetone solution with ultrasonic agitation for 20 min to clean the surface. Secondly, the powders were sensitized in an aqueous solution of 10 g/L SnCl₂·6H₂O and 30 ml/L HCl for 10 min. Finally, the Al₂O₃ powders were activated in an aqueous solution of 0.25 g/L PdCl2 and 3 ml/L HCl for 10 min. The powders were rinsed with distilled water in each step and dried in oven after the pretreatment processes. In order to investigate the effect of Sn²⁺ absorption behaviors on electroless nickel plating, different SnCl2 sensitization conditions were controlled to prepare powders, as given in Table 3. For sample A, the sensitization condition is that 0.05 g Al₂O₃ powders were immersed in 80 ml SnCl₂ solution followed by rinsing for five times with 100 ml distilled water in ultrasonic cleaner. Sample B and C are both with 0.1 g Al₂O₃ powders and rinsed in 100 ml distilled water, but different in rinsing times. Each rinsing lasted for 5 min.

Download English Version:

https://daneshyari.com/en/article/1459191

Download Persian Version:

https://daneshyari.com/article/1459191

<u>Daneshyari.com</u>