Chemical Engineering Journal 287 (2016) 92-102

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

External liquid solid mass transfer for solid particles transported in a milli-channel within a gas-liquid segmented flow

Anne-Kathrin Liedtke, Frédéric Bornette, Régis Philippe*, Claude de Bellefon

Laboratoire de Génie des Procédés Catalytiques, UMR 5285 CNRS-CPE Lyon, Université de Lyon, 43 boulevard du 11 novembre 1918, BP 82077, 69616 Villeurbanne Cedex, France

HIGHLIGHTS

- L–S external mass transfer has been investigated for G–L–S slurry Taylor flow.
- Mass transfer coefficients appear similar to stirred tanks and slurry bubble columns.
- There is a little impact of flow orientation on mass transfer coefficient.
- Predictive Sherwood correlations have been derived.
- A CHER can combine good transfers to quasi-ideal plug flow for all phases.

ARTICLE INFO

Article history: Received 24 June 2015 Received in revised form 13 October 2015 Accepted 26 October 2015 Available online 7 November 2015

Keywords: Taylor flow External mass transfer Solid catalyst particles Reactor comparison

G R A P H I C A L A B S T R A C T

ABSTRACT

This article focuses on the measurement of external liquid-solid mass transfer coefficient for microparticles ($d_{\rm P}$ = 40–200 µm) transported in a gas–liquid Taylor flow. The particles are kept in motion due to the secondary vortices present in the liquid slugs of these segmented flows. Acidic ion exchange particles and dilute sodium hydroxide solutions are used to perform ion exchange and neutralisation under external mass transfer limitations. Concentration profiles are monitored along the reactor with 4 conductivity cells which provides accurate mass transfer coefficients for each experiment. Two phase velocity (2.5-28 cm/s), mean particle size (100-160 µm), solid loading (5-18 g/L), reactor orientation (vertical down flow-horizontal) and liquid phase nature (Sc = 790–2300) were investigated. In that experimental window, it was found that the solid charge and the flow direction have a small influence on the L-S mass transfer even though the direction of the flow influences particle distribution in the liquid slug. Similar mass transfer coefficients and dependencies on the two phase velocities and liquid properties were found. Increasing the two-phase velocity leads first to increase the mass transfer coefficient. Then at highest velocities ($u_{\rm TP}$ > 20 cm/s), a much lower impact is observed and the mass transfer coefficient tends to stabilize. A first correlation form for the L-S Sherwood number in "slurry Taylor" flow is proposed for both flow orientations. These findings are used in a second part to illustrate the high potentialities of this advanced structured flow in comparison with other conventional reactors using suspended particles like stirred tank and bubble column reactors. The G-L-S "slurry Taylor" offers compelling advantages combining excellent overall external mass transfer (G-L and L-S) and almost ideal plug flow behaviour for the three phases and very good heat transfer capacities.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

* Corresponding author. *E-mail address:* regis.philippe@lgpc.cpe.fr (R. Philippe).

http://dx.doi.org/10.1016/j.cej.2015.10.109 1385-8947/© 2015 Elsevier B.V. All rights reserved. Multiphase reactions and especially three phase gas-liquidsolid (G–L–S) reactions play an important role in the chemical,

CrossMark

Chemical Enaineerina

Journal

Abbrevia	tions				
В	bubble				
exp.	experimental				
Н	horizontal				
G	gas phase				
Ι	inert phase				
L	liquid phase				
Р	particle				
S	solid phase				
susp.	L-S suspension				
theo.	theoretical				
IP	two phase				
V	vertical				
Roman					
Aexch	surface area for wall heat exchange [m ²]				
a _{CI}	gas-liquid interface specific surface area $[m_{CI}^2/m_R^{-3}]$				
$a_{\rm LS}$	liquid-solid interface specific surface area $[m_{LS}^2 m_R^{-3}]$				
as	solid particle geometrical specific surface area [m ⁻¹]				
Ca	capillary number $(\mu_L \cdot u_b / \sigma_L)$ [–]				
C_{Na+}	sodium ion concentration in the liquid phase [mol L^{-1}]				
C _{Na+,su}	sodium ion concentration at the solid surface [mol L^{-1}]				
$C_{\rm NaOH,0}$	initial sodium hydroxide concentration at the reactor				
	entrance [mol L ⁻¹]				
$d_{\rm P}$	particle diameter [m]				
$a_{\rm P,S}$	Sauter particle mean diameter [m]				
a _T	Internal tube of reactor diameter [m] diffusivity of sodium ions in the liquid mixture $[m^2 c^{-1}]$				
D _{m,L Na+}	aniusivity of social for social f				
e _W f	friction factor [_]				
J Esta	molar flux of Na ⁺ ions [mol s ^{-1}]				
or Na+	gravitational acceleration [m s ^{-2}]				
ĥ	column or reactor height [m]				
hext	wall convective heat transfer coefficient (utility side)				
chi	[W/m ² /K]				
$h_{\rm int}$	wall convective heat transfer coefficient (process side)				
	$[W/m^2/K]$				
$k_{\rm L}$	G-L mass transfer coefficient [m s ⁻¹]				
k _L a	G–L mass transfer coefficient [s ⁻¹]				
K _{OV}	overall volumetric mass transfer coefficient [s ⁻¹]				
K _S	L-S external mass transfer coefficient [m s ⁻¹]				
L _{slug}	two bubble noses [m]				
$n_{\rm IE,0}$	initial molar amount of ion exchange sites [mol]				
n _{NaOH,0}	initial molar amount of sodium hydroxide ions [mol]				
N_{Na^+}	normalized molar flux of Na ⁺ ions [mol s ^{-1} m ^{-2}]				
Р	pressure [Pa]				
P	power consumption [W]				
PeL	liquid Peclet number $(u_{TP} d_T/D_{ax} \text{ for Taylor flow}) [-]$				
Q _{aqu.}	volumetric now rate of the aqueous suspension, before				
	mixing with NaOH solution and formation of laylor flow $[m^3 s^{-1}]$				
	now [m 5]				

Symbols

0.	volumetric flow rate of inert phase (here gas) $[m^3 s^{-1}]$					
Qinert	volumetric flow rate of sodium hydroxide solution					
Q NaOH	volumetric now rate of solution invertexide solution $[m^3 c^{-1}]$					
0	entering the junction [III S] $a = 1$					
QL	volumetric now rate of inquid phase [m ⁻ s ⁻]					
Q _{susp.}	volumetric flow rate of L–S suspension					
_	$(Q_{\text{susp.}} = Q_{\text{NaOH}} + Q_{\text{aq.}}) [\text{m}^3 \text{ s}^{-1}]$					
Re _{TP}	Reynolds number based on flow velocity (Re _I = $\rho_L u_{TP} d_T$)					
	$\mu_{\rm L}$) [-]					
Rep	particulate Reynolds number based on relative slip					
	velocity (Re _P = $\rho_L \cdot u_R \cdot d_p / \mu_L$) [–]					
Re _{p,I}	particulate Reynolds number based on energy dissipa-					
1,	tion rate $(\text{Re}_{n1} = \overline{\epsilon} \cdot dp^4 / v^3)^{1/n}$ with $n = 2, 3$ respectively					
	for laminar and turbulent flows [–]					
Renu	particulate Reynolds number based on flow velocity					
p,11	$(\operatorname{Re}_{\mathrm{p}}) = \rho_{\mathrm{I}} \cdot \mu_{\mathrm{TP}} \cdot d_{\mathrm{p}} / \mu_{\mathrm{I}}) [-]$					
Sis	liquid-solid interface [m ²]					
ST	channel cross section [m ²]					
SCI	Schmidt number $(\mu_1 (\rho_1, D_{Na+}))$ [-]					
Sh	Sherwood number $(k_{s} \cdot d_{b}/D_{N_{3}+})$ [–]					
II	overall wall heat transfer coefficient $[W/m^2/K]$					
Uh	bubble velocity $[m s^{-1}]$					
11p	relative mean slip velocity between solid particles and					
an	the liquid flow $[m s^{-1}]$					
11770	2-phase velocity $((0 + 0))/S_{r}$ [m s ⁻¹]					
ulp U a	superficial gas velocity $[m s^{-1}]$					
u _{V,G}	superficial liquid velocity $[m s^{-1}]$					
$u_{v,L}$	liquid volume [m ³]					
V	liquid solid suspension volume [m ³]					
VLS	iquid-solid suspension volume [m]					
V R	mass fraction of surfactant []					
w _{surf.}	malar fraction of water []					
$x_{\rm H_2O}$	molar fraction of water [-]					
Z	position of length [-]					
Greek						
β_{L}	liquid phase hold-up for the liquid solid suspension only					
	$(m_{\rm L}^3/(m_{\rm L}^3 + m_{\rm S}^3))$ [-]					
ΔP	pressure drop [Pa]					
Δho	relative difference in density between solid particles					
	and liquid phase [kg m^{-3}]					
ã	energy dissipation rate per unit volume of reactor					

 $[W m_R^3]$ $\overline{3}$ energy dissipation rate per unit mass of liquid $[W kg_L^{-1}]$

gas hold up (per reactor volume) [-] \mathcal{E}_{G}

solid hold up (per liquid volume) [-] 8_{5,1}

solid hold up (per volume of G-L-S mixture) [-] 8_{S.2}

dynamic viscosity [Pa s] μ

v kinematic viscosity [m² s⁻¹]

ρ	density	[kg m	J		

- residence time in reactor [s] τ
- sodium ion conversion [%] X_{Na^+}

petrochemical or pharmaceutical industries. In the particular case of heterogeneously catalyzed reactions, the use of a solid suspension appears often the best trade off between easiness of solid catalyst handling, process complexity, flexibility and reactor performance. Fine powders provide good external surface area for heat and mass transfers and enhanced internal transfers. Moreover, introducing or replacing catalyst particles in a continuous way, appears easier for regeneration of fast deactivating catalysts than in other technologies with fixed catalyst structures. Usual three phase G-L-S reactors using suspension catalysts are bubble columns, stirred tank reactors and fluidized or ebullated

beds [1-4]. These reactors are generally characterized by good mass and heat transfer capacities, low power requirements and high flexibility. However they also promote a high degree of back-mixing which can be a drawback for reactions with selectivity issues and when very high conversions are required. For applications which require the use of suspension catalysis (e.g. deactivation issue, need for a high internal mass transfer) and when the intrinsic reaction kinetics demand a plug flow behaviour and good external mass transfer abilities, no industrial technology appears able to answer both demands simultaneously.

 $[\]omega_{cat}$ or ω_{S} catalyst or solid loading $[kg_{S}/m_{L+S}^{3}]$

Download English Version:

https://daneshyari.com/en/article/145920

Download Persian Version:

https://daneshyari.com/article/145920

Daneshyari.com