

Available online at www.sciencedirect.com

CERAMICS INTERNATIONAL

Ceramics International 41 (2015) 10537-10546

www.elsevier.com/locate/ceramint

Nanostructured alumina films by E-beam evaporation

I. Neelakanta Reddy^a, N. Sridhara^b, Parthasarathi Bera^c, Chinnasamy Anandan^c, Anand Kumar Sharma^b, Arjun Dey^{b,*}

^aCentre for Nanoscience and Nanotechnology, Sathyabama University, Chennai 600119, India

^bThermal Systems Group, ISRO Satellite Centre, Indian Space Reserach Organisation, Bangalore 560017, India

^cSurface Engineering Division, CSIR—National Aerospace Laboratories, Bangalore 560017, India

Received 25 February 2015; received in revised form 25 April 2015; accepted 26 April 2015 Available online 5 May 2015

Abstract

The E-beam evaporation technique is utilised at room temperature to deposit 90, 120 and 150 nm thin alumina films on 75 µm thin titanium foils. As-grown films are annealed at 500, 700 and 800 °C in air. The phase analysis, morphology and electronic structure of the as-grown and annealed thin films are respectively investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS) techniques. The XRD results show that the as-grown thin films are amorphous. The annealed thin films show crystalline peaks corresponding to a mixture of different phases of alumina. The FESEM studies reveal tripod-like nanostructure and dense nanorods in the alumina thin films annealed at 700 and 800 °C, respectively. These results are explained on the basis of experimental evidences provided by the corresponding XPS studies.

© 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Alumina; Film; E-beam evaporation; Nanorod; Tripod

1. Introduction

The nanostructures particularly 1-dimensional (1D) nanostructures e.g., nanorods, nanotubes, nanowires, etc. assume very special significance today than ever before particularly due to the emerging application prospects in micro/nanodevices that can be useful in a wide variety of technologically important fields e.g., electronic, optoelectronic, magnetic, chemical, mechanical, biomedical, etc. [1,2]. In this context, alumina nanostructures have potential applications in both structural and high temperature resistant composites, catalysts, adsorbents, transparent structures, electrochemical processes and future nanodevices [1–5]. The alumina nanostructures in the form of rods [3,5–12], wires [1,2,4,5,11,13–17], tubes [1,15–18], platelets [19], leaves [20], flowers [20], belt [13], fibres [1,21,22], walls [5], pillars [16] and polygon [12] have

http://dx.doi.org/10.1016/j.ceramint.2015.04.147

0272-8842/© 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

been widely studied. These are summarised in Table 1. Mainly alumina nanopowder synthesised by various methods are reported [3,4,6–10,13,14,18–22]. Typically these methods include hydrothermal [4,6,7,10,18–20,22], solvothermal [21], carbothermal [14], sol–gel [3,8] and in-situ chemical vapour deposition (CVD) [13] techniques with or without the use of surfactant or template or base. Development of integrated alumina coating nanostructure on aluminium substrate by anodic oxidation [1,11,15] or subsequent chemical etching [5,16,17] is also reported. However, studies on nanostructured alumina films/coatings are scarce in the literature [2,12].

In the present work, through variations in post-deposition annealing temperature different nanostructured alumina films are deposited by the electron beam (E-beam) evaporation technique on titanium (Ti) substrate. The phase analysis, surface morphology and electronic structure of the deposited and post-annealed films are studied respectively by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and X-ray photoelectron spectroscopy (XPS) techniques.

^{*}Corresponding author. Tel.: +91 80 2508 3214; fax: +91 80 2508 3203. *E-mail addresses:* arjundey@isac.gov.in, arjun_dey@rediffmail.com (A. Dey).

Table 1

Literature status of alumina nanostructures.

Form of alumina i.e. as film/ powder	Phase	Processing details	Calcination/annealing temperature	Type of nanostructures	Dimensions (nm)	Remarks	References
Integrated coating on Al substrate	А	Anodic oxidation	-	Fibres, wires, tubes	Nanowire- D: 30 Nanotube-	-	[1]
Film on Si substrate	-	Thermal evaporation method: Al and alumina powder as precursors	Processing temperature- 1000 °C for 2 h	Wires	<i>D</i> _o : 220 <i>L</i> : 2000–3000 <i>D</i> : 40	Catalyst free growth	[2]
Powder	γ	Sol-gel	500 °C for 4 h	Rods	L: 26–9 D:1–7	Soft template	[3]
Powder	Β, γ	Hydrothermal route: AlCl ₃ and NaOH as precursors	500 °C for 2 h	Wires	<i>L</i> : 100–200 <i>D</i> : 10–30	-	[4]
Integrated coating on Al substrate	Α, γ, α+ γ	Anodic oxidation and subsequent chemical etching by NaOH	600–1000 °C	Wires (A), rods (γ), walls (α + γ)	Nanowire- D: 60 Nanorod- D:180 Nanowalls- T:50	-	[5]
Powder	γ	Hydrothermal route: Al $(NO_3)_3 \cdot 9H_2O$ as precursor	800 °C for 2 h	Rods	AR:2–4	Without templates	[6]
Powder	γ	Hydrothermal route: AIP as precursor	350–600 °C for 6 h	Rods	L: 500 D:100–300	Phenol formaldehyde as a template	[7]
Powder	B, $\gamma + \delta + \alpha$	Sol-gel route: AIP as precursor	500–700 $^{\circ}\mathrm{C}$ for 4 h	Rods	L: 17–18 D: 6–8	-	[8]
Powder	γ	Solvothermal route: AlCl ₃ and NaOH as precursors	500 °C for 3 h	Rods	L: 170–320 D:15–25	Surfactant assisted	[9]
Powder	Β, γ	Hydrothermal route: ATB as precursor	500 °C for 4 h	Rod	L: 200	Without added organic solvents	[10]
Integrated coating on Al substrate	_	Anodic oxidation	-	Wires, rods	Nanowires- L: 1000–2500 D: 35–80 Nanorods- L: 100	-	[11]
Film on SS304 substrate	$_{\alpha+\delta+\gamma+\theta}^{A,}$	E-beam evaporation method	700 $^{\circ}\mathrm{C}$ for 2 h	Rods, polygon (preferential growth)	<i>L</i> : 3000–7000 <i>D</i> : 28–570	Room temperature deposition	[12]
Powder	α	Integrated furnace assembly with CVD facility: alumina and Al as	Processing temperature- 1350 °C for 1 hr (Belts), 1250 °C for 1 h (Wirec)	Belts, wires	-	_	[13]
Powder	α	Carbothermal route: Al and graphite as precursors	Processing temperature- 1300 °C for 6 h	Wires, tubes	Nanotubes- $D_i = 20-25$ $D_i = 40, 50$	_	[14]
Integrated coating on Al substrate	-	Anodic oxidation	-	Wires, tubes	$D_0 = 40 - 50$ Nanotubes: L: < 1000	-	[15]
Integrated coating on Al substrate	-	Anodic oxidation and subsequent chemical etching by NaOH	450 °C	Tubes (half), wires, pillars	D: 30-00 Nanowire- D: 23 Nanopillars- D: 28	-	[16]
Integrated coating on Al substrate	-	Anodic oxidation and subsequent chemical etching by NaOH	420 °C	Wires, tubes	Nanowire- <i>L</i> : > 1000 <i>D</i> : 50 Nanotube- <i>D</i> : 100	-	[17]
Powder	A (upto 700 °C), γ (800 °C)	Hydrothermal route: Al $(NO_3)_3 \cdot 9H_2O$ as precursor	500–800 °C for 5 h	Tubes	<i>L</i> : < 200 <i>D</i> : 3–10	Anionic surfactant assisted	[18]
Powder	Β, γ	Hydrothermal route: AIP as precursor	600 $^\circ\!\mathrm{C}$ for 15 min	Platelets	<i>D</i> _m : 30–80 (B) <i>D</i> _m : 60–70 (γ)	-	[19]
Powder	Β, γ	Hydrothermal route: AlCl ₃ and NaOH as precursors	600 °C for 4 h	Leaves (B), flowers (γ)	Leaves-lateral size: $4500 \times 9000 \text{ nm}^2$ T: 60–90	Surfactant assisted	[20]
Powder	Β, γ	Solvothermal route: AlCl $_3 \cdot 6H_2O$ as precursor	500 °C for 3 h	Fibres	L: 2000 D: 330	Without any surfactant or template or base	[21]
Powder	γ	Hydrothermal: ATB as precursors	500 °C for 4 h	Fibres	-	Cationic surfactant assisted	[22]

A: amorphous, B: boehmite, AIP: aluminium isopropoxide, ATB: aluminum tri-sec-butoxide, D: diameter, D_m : mean diameter, D_o : outer diameter, D_i : inner diameter L: length, AR: aspect ratio (L/D), T: thickness, CVD: chemical vapor deposition.

Download English Version:

https://daneshyari.com/en/article/1460012

Download Persian Version:

https://daneshyari.com/article/1460012

Daneshyari.com