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Abstract

In our previous work [Abdellahi, J. Mater. Res. 28 (2013) 3270], a novel method was used to predict the hardness of Aluminum matrix nano-
composites synthesized by high energy ball milling. In the mentioned work, however, systems under study were very limited, the squared
regression of training and testing sets was not significant and optimizing was not performed on the milling parameters so that we finally had not
an optimal system with a maximum value of hardness. In this work, for the first time, all mentioned shortcomings were addressed and resolved
and as a new work the process parameters, namely, amount of reinforcement, amount of process control agent, type of mill, type of vial, type of
ball, vial spinning rate, ball to powder weight ratio, type of process control agent, type of atmosphere, milling time, sintering time, sintering
temperature and compact pressure were optimized to maximize the hardness of metal/ceramic nanocomposites produced by high energy ball
milling. To evaluate the efficiency of the proposed optimization, a system based on the optimized parameters was established (system 2) and the
obtained results were compared with those in system that was established based on the parameters used by Akbarpour et al. (system 1). The
results showed two things: first, the use of system 2 brings a maximum value of hardness for the produced nanocomposites and second, the
optimized system is really consistent with what actually happens in practice.
& 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
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1. Introduction

Mechanical alloying (MA) or high energy ball milling as a
powder processing technique involves repeated deformation,
welding and fracturing of powder particles. MA has been
widely used to synthesize a variety of materials, such as
supersaturated solid solutions, (non-equilibrium) intermetallic
compounds, or to the formation of stable or unstable carbides,
borides, nitrides, silicides, etc. [1–3]. It is well known that the
addition of ceramic hard particles to metal alloys increases the
strength, micro-hardness, and wear resistance during high
energy ball milling [4]. But, it is essential to have an optimal
milling parameters (in this study, sintering time, sintering
temperature and compact pressure were also considered as

milling parameters) to achieve excellent mechanical properties.
Otherwise, agglomeration or inhomogeneous distribution of
reinforcement can lead to lower ductility, strength, and
toughness of the composites. Enhanced mechanical properties
can be obtained when the milling parameters are optimal.
Accordingly, it is important to find a mathematical model

to correlate the milling parameters with the hardness of
metal/ceramic nano-composites and then optimizing the
mentioned model. It should be noted that the aim of
constructing a model is to be able to simulate the mechan-
ical alloying process and to predict the harness of metal/
ceramic nano-composites by adjusting the milling para-
meters appropriately and the aim of optimizing is to find
an optimum milling parameters x, y, z,… whose hardness or
relevant cost f(x, y, z,..) is maximum.
In this paper, Gene expression programming (GEP) and

Artificial Bee Colony (ABC) algorithms as powerful tools
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have been utilized to modeling and optimizing of mechanical
alloying process, respectively.

Ferreira developed the basic Gene expression programming
(GEP) [5] algorithm in 2001, which has inherited the advan-
tages of the traditional genetic algorithm (GA) and genetic
programming (GP). It has been applied to many fields [6–9]
for its simple coding, fast convergence speed and strong ability
of solution problems. One important application of GEP is
symbolic regression or function finding, where the goal is to find
an expression (equation) that performs well for all fitness cases
within a certain error of the correct value [5]. The “function
finding” application of GEP can be extremely important within the
pharmaceutical field. In general, the relationships between response
variables and causal factors are not simple and the prediction of
response variables on the basis of mathematical expressions using
empirically observed values or measurements is a common and
important problem to be solved.

The Artificial Bee Colony (ABC) algorithm, proposed by
Karaboga in 2005 for real-parameter optimization, is a newly
presented optimization algorithm which simulates the foraging
behavior of a bee colony [10]. Karaboga et.al [11] compared
the performance of the ABC algorithm with that of genetic
algorithm (GA), particle swarm optimization (PSO), differen-
tial evolution (DE) and evolution strategy (ES) algorithms on a
large categories of unconstrained test functions, and found that
its performance is better than or similar to that of other
algorithms although it uses less control parameters and it can
be efficiently used for solving multi-modal and multi-
dimensional optimization problems. ABC like ICA and BBO
is a new and powerful optimization technique which has rarely
been used in materials engineering [12–14].

In our previous work [9], Gene expression programming
was utilized to predict the hardness of Aluminum matrix
nanocomposites synthesized by mechanical alloying; however
there were three flaws in the research.

1. Several milling parameters such as type of mill, type of ball,
type of vial, type and amount of PCA, amount of
reinforcement and milling atmosphere affecting on hardness
were not considered.

2. Systems under study were very limited (only Al matrix
nanocomposites), led to a very low number of data and
therefore the obtained results do not cover a wide area.

3. The squared regression of training and testing sets was not
significant. This can drastically reduce the accuracy of the
model.

4. Optimizing was not performed on the milling parameters so
that we finally had not an optimal system.

In this work, for the first time, all mentioned shortcomings
were addressed and resolved and as a new work in material
science and especially mechanical alloying, a targeted synthesis
of nanopowders was simulated, modelled and optimized. Our
experimental results prove that by considering all determining
parameters, the GEP and ABC are promising techniques to
simulate ball milling process and optimize the parameters for
enhanced performance.

2. Materials and methods

2.1. Data collection

The collected data from the previous works [15–33] are
listed in Table 1. The hardness of several MA-synthesized
nano-composites has been considered as the main objective or
cost function of this study for prediction by a GEP model. The
input parameters were consisted of the amount of reinforce-
ment, amount of PCA, type of mill, type of vial, type of ball,
vial spinning rate, BPR, type of PCA, type of atmosphere,
milling time, sintering time, sintering temperature and compact
pressure with the given ranges in Table 2. Further details about
the values presented in Table 1 have been listed in the Table 3.
For example, in the column of “type of atmosphere”, number
(1) is the argon atmosphere.

2.2. Genetic programming and gene expression programming
theory

Genetic programming (GP) is proposed by Koza [34]. It is a
generalization of genetic algorithms (GAs) [35]. The most
general form of a solution to a computer-modelled problem is a
computer program. GP takes cognizance of this and endeavors
to use computer programs as its data representation.
In GEP, individuals are encoded as linear strings of fixed

size (genome), which are expressed later as non-linear entities
with different size and shapes. These entities are known as
expression trees (ETs). Usually, these individuals are com-
posed by only one chromosome, which, in turn, can have one
or more genes, divided in head and tail parts. ETs are the
expression of a chromosome, and they undergo the selection
procedure, guided by their fitness value, so as to generate new
individuals. During reproduction, the chromosomes, rather
than the respective ET, are modified by the genetic operator.
In GP, the expression trees act both as phenotype and as
genotype, while in GEP the phenotype is obtained through a
translation process from the genotype. This way, an important
advantage of GEP over classical GP is clear separation
between phenotype and genotype. The chromosomes may be
consisted of one or more genes which represents a mathema-
tical expression. The mathematical code of a gene is expressed
in two different languages called Karva Language [5] such as
the language of the genes and the language of the ETs. The
genes have two main parts addressed as the head and the tail.
The head includes some mathematical operators, variables and
constants (þ , � , n, /, √, sin, cos, 1, a, b, c) which are used to
encode a mathematical expression. The tail just includes
variables and constants (1, a, b, c) named as terminal symbols.
Additional symbols are used if the terminal symbols in the
head are inadequate to define a mathematical expression. A
simple chromosome as linear string with two genes is encoded
as shown in Fig. 1. Its ET and the corresponding mathematical
equation are also shown in same figure. The translation of ET
to Karva Language is done by beginning to read from left to
right in the top line of the tree and from top to bottom. Joining
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