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Abstract

This paper analyzed a Young’s modulus (E) and a thermal expansion coefficient (TEC, f) of the material with simple cubic particulate
inclusion using two model structures: a parallel structure and a series structure of laminated layers. The derived f equations were applied to
calculate the S value of the W-MgO system. Both the models provided a good agreement for the measured and calculated f values. The accuracy
was higher for the series model structure than for the parallel model structure.
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1. Introduction

A thermal expansion coefficient (TEC) is an important
property of material, which affects thermal shock resistance
or joining of two materials at a high temperature. Fortunately
many TEC values of metals and ceramics are listed on a
chemical handbook [1] or a metal handbook [2]. These
available data are used to calculate the residual stress of the
interphase between a mullite matrix and incorporated long
fibers [3] at a low temperature or the critical temperature
difference required for crack instability upon quenching of
heated ceramics [4]. In a previous paper [5], we succeeded in
relating a TEC to a heat capacity at a constant pressure and a
Young’s modulus of a material, or representing a TEC by the
ratio of a heat capacity at a constant volume to a heat capacity
at a constant pressure, the Poisson’s ratio and heating
temperature. The calculated TEC values agreed well with the
reported TEC values for Al, Ag, Au, Be, Bi, C(diamond), Cu,
Hf, In, Mo, Nb, Pb, Ta, Ti, V, W, Zr, BaTiO3, 3A1,05 - 2Si0,,
SiO,, SiC and TiN.
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Our next challenge is to derive a mixing rule of TEC of a
composite material. In text books of ceramics [6,7], some
theoretical or empirical mixing rules are presented. Table 1
shows the theoretical equations of volume expansion coeffi-
cients of composite materials with particulate inclusion devel-
oped by Turner and Kerner [6,8]. The volume expansion
coefficient of multiphase composite material by Turner’s
equation is composed of the weight fraction, the volume
expansion coefficient, and the bulk modulus of each phase
included [6,8]. The volume expansion coefficient by Kerner’s
equation for two phase composite is also related to the bulk
modulus, the shear modulus, the fractional volume and the
volume expansion coefficient of each phase [6]. The desirable
mixing rule is to be expressed by less available well known
parameters. In this paper, a model structure of material with
simple cubic inclusion, which was used in the calculation of
the thermal conductivity of composite [9], was applied to the
derivation of a mixing rule of TEC of a composite material.
The derived mixing rule was compared with the reported data
of the W-MgO system presented in the text book [6]. A very
good agreement was shown between the reported and calcu-
lated TECs. The newly derived mixing rule was also compared
with the reported Turner’s equation and Kerner’s equation. As
compared with the previously developed two equations, the
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Table 1
Theoretical equations of volume expansion coefficients of composite materials
with particulate inclusion developed by Turner and Kerner.

Turner's equation

aKiWy/p) +axKaWa /p, (A)
KiWi/py +K2Wa/py

Kerner's equation

a:. =

_ K1(3Ky +4G1)* + (K2 — K1)(16G} +12G1K,)
a.=a;+ Vol —ay) (4G, +3K1)[4V,G (K, — K1)+ 3K K2 + 4G K] B)

a.: Volume expansion coefficient of composite material
a;: Volume expansion coefficient of phase i

K;: Bulk modulus of phase i

W;: Weight fraction of phase i

pi: Density of phase i

Vi: Volume fraction of phase i

G;: Shear modulus of phase i

mixing rule in this paper was closer to the measured TEC of
the W-MgO system.

2. A model structure

Fig. 1 shows a simple cubic inclusion model with length a in
one cubic box with length 1/p [9]. The number (n) and the
volume fraction (V) of cubic inclusion in unit volume of the
composite are related by Eq. (1),

V=a’n (1)

The number (p) of inclusion along one direction of cubic
composite is equal to n’*(=V"?/a) and the distance between
two inclusion is given by (1/p —a). The structure surrounded by
dotted lines (Fig. 1(b)) represents the linear connection of
inclusion and matrix. This structure of Fig. 1(b) is sandwiched
by two layers of a continuous matrix phase as shown in Fig. 1(c)
(unit cell structure). At first, the Young’s modulus of the
composite (Fig. 1(a)) with particulate inclusion is calculated.

3. Young’s modulus of composite of a parallel structure

When a tensile or compressive stress (o) is applied to the
cross section (area, a”) of composite (b) in Fig. 1(b), the strain
(e=AL/Ly,Ly: starting length) is related to the applied ¢ and
the Young’s moduli (E) of materials 1 and 2.

o = E e ((for inclusion phase 1) = E,e,(for matrix phase 2)
(2)

The above relation results in Eq. (3)
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The extended lengths for inclusion phase 1 and matrix phase

2 of the composite (b) shown in Fig. 1(b) are given by Eqgs. (4)
and (5), respectively.
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Fig. 1. A parallel structure model of material with simple cubic inclusion with
length a. The geometrical features are shown in (b) and (c).

The strain (g;,) for the composite (b) is expressed by Eq. (6)
using Egs. (3), (4) and (5).

=amea @) o

When a tensile or compressive stress is applied along the
direction of the length of the composite (b), the Young’s
modulus (E,) of composite (b) is expressed by Eq. (7).

c=Epe, =E& (7
The substitution of Eq. (6) for Eq. (7) gives the Young’s
modulus, E,, by Eq. (8) as functions of E; and E,.
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Since the product of pa is equal to V3 (see Eq. (1)), Eq. (8)
is expressed as a function V by Eq. (9).
E\ E,

E,= 9
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Next, we derive the Young’s modulus (E.) of the composite
(c) shown in Fig. 1(c). When a tensile or compressive stress
(o.) is applied to the cross section of composite (c), the force
(F}) applied to the cross section of composite (b) is given by
Eq. (10).

F, =Ebazec (10)

The cross sectional area (S,,) of the matrix in Fig. 1(c)
surrounding composite (b) is expressed by Eq. (11),

2
sz (;) —(12 (11)

The force (F,,) applied to the cross section of the matrix
phase 2 is given by Eq. (12)

1 2
F,y = E».S,, = Ezec{ <;> —a2} (12)
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