Chemical Engineering Journal 278 (2015) 24-35

Contents lists available at ScienceDirect

Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Experimental and modeling study of selective ammonia oxidation on multi-functional washcoated monolith catalysts

Chemical Enaineerina

Journal

Sachi Shrestha^a, Michael P. Harold^{a,*}, Krishna Kamasamudram^b

^a Dept. of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204-4004, USA ^b Corporate Research and Technology, Cummins Inc., 1900 McKinely Av., Columbus, IN 47201, USA

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- Mixed and dual-layer monoliths were compared at various feed compositions.
- Mixed catalyst performs better at low temperature (150–300 $^\circ$ C) with lower N₂O yield.
- Dual layer catalyst performs better at *T* > 300 °C giving lower NO_x yield.
- 1+1 D monolith model combine reaction kinetics on Pt catalyst and Fe–ZSM-5 catalyst.
- Model confirms the experimentally observed NH₃ conversion and product selectivity.

ARTICLE INFO

Article history: Available online 30 January 2015

Keywords: Ammonia Monolith Platinum Zeolite Selective catalytic reduction Oxidation

ABSTRACT

An experimental and modeling study of the selective oxidation of ammonia to N₂ on washcoated multifunctional Pt/Al₂O₃ + Fe–ZSM-5 monolith catalysts is reported. The catalysts are compared for a range of temperature, space velocity, and feed composition in the presence of H₂O and CO₂. The addition of the Fe–ZSM-5 is effective in converting the NO_x produced by the poorly selective Pt/γ -Al₂O₃ catalyst. In the absence of feed NO, the dual-layer catalyst has a high selectivity to N_2 due to selective reaction in the Fe-zeolite layer between NH_3 from the bulk and counter-diffusing NO_x formed in the underlying Pt/Al₂O₃. For $T < 300 \degree$ C the mixed Fe–ZSM-5/Pt/Al₂O₃ catalyst has a lower N₂O yield than the dual-layer Fe-ZSM-5/Pt/Al₂O₃ catalyst. This is attributed to NO migration and reduction on the Fe-ZSM-5. The mixed washcoat gives a lower N_2 yield than the dual-layer due to Pt-catalyzed NH₃ oxidation to NO_x, which diffuses to the gas phase before its reduction. The mixed catalyst is less selective to N₂ because the Pt catalyst in proximity to the SCR catalyst leads to the oxidation of NH_3 back to NO_x . Most of the trends are predicted by a 1+1 D reactor model that includes the Pt/Al₂O₃ ammonia oxidation and Fe-ZSM-5 SCR kinetics and the relevant transport processes. Kinetic parameters are estimated from single catalytic component experiments while the effective diffusivities in the layers are estimated from the simulation of multi-layer experiments in which inert top layers of γ -Al₂O₃ and Na–ZSM-5 were deposited onto an underlying Pt/Al₂O₃ layer. With the help of the model, explanations of the trends are provided. © 2015 Elsevier B.V. All rights reserved.

1. Introduction

Diesel and lean burn engines are gaining popularity due to their higher fuel economy and lower greenhouse gas emissions compared to gasoline engines. However, diesel engines are required

* Corresponding author. E-mail address: mharold@uh.edu (M.P. Harold).

ELSEVIER

2	
Z	Э

а	width of the monolith channel (m)	$\langle u \rangle$	average fluid velocity in the fluid phase (m/s)
C_{nt}	total concentration of Pt (mol/m^3)	t	time (s)
C_{Tm}	total gas concentration (mol/m^3)	Т	monolith temperature (K)
Df	diffusivity of species in the fluid phase (m^2/s)	χ _f	cup-mixing mole fraction in fluid phase
D_e	effective diffusivity of species in the washcoat (m^2/s)	Xs	mole fraction fluid-washcoat interface
Ear	Activation energy of reaction r (I/mol)	Xwc	species mole fraction in the washcoat
k _{me}	external mass transfer coefficient (m/s)	y	length co-ordinate along radial direction (m)
k _{0r}	pre-exponential factor of reaction $r(1/s \text{ or } m^3/\text{mol/s})$	z	length co-ordinate along axial direction (m)
L	length of the monolith (m)		с с с <i>с ,</i>
т	number of mesh points in radial (washcoat) direction	Greek l	etters
Ν	number of mesh points in axial direction	Euro	porosity of washcoat
Р	transverse Peclet number	λ	ratio of diffusivity of species in the fluid phase to effec-
R_r	specific reaction rate (1/s)		tive diffusivity in the washcoat
R_{O1}	effective transverse diffusion length for flow area (m)	29:	stoichiometric coefficient of species i for reaction r
Roz	effective washcoat thickness (m)	Οjr Α.	fractional surface coverage of species k
Sc	Schmidt number	τ^{0_R}	tortuosity factor of the washcoat
Sh _e	external Sherwood number	• WC	tortuosity factor of the washcoat

to meet current and future emission regulations of oxides of nitrogen (NO_x) like Tier 2 and EURO VI [1]. One approach to comply with these stringent NO_x emission regulations is through the now-commercialized selective catalytic reduction (SCR) of NO_x. In most applications the reductant is NH₃ which is generated onboard through the following set of decomposition and hydrolysis reactions:

R1 :
$$NH_2$$
-CO- $NH_2(aq.) \rightarrow NH_2$ -CO- $NH_2(s) + xH_2O(g)$

Nomenclature

$$\label{eq:R2} \begin{array}{ll} \text{R2}: & \text{NH}_2\text{--}\text{CO}\text{--}\text{NH}_2(s) \rightarrow \text{NH}_3(g) + \text{HNCO}(g), \quad \Delta H = 186 \ \text{kJ} \end{array}$$

R3 :
$$HNCO(g) + H_2O(g) \rightarrow NH_3(g) + CO_2(g), \quad \Delta H = -96 \text{ kJ}$$

SCR technology uses metal- (Cu- or Fe-) exchanged zeolites, both of which have the requisite NH₃ affinity and reduction activity for NO_x conversion to N₂. The selective reduction of NO_x to N₂ in presence of NH₃ takes place through one or more of the following reactions:

$$R4: \quad 4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O \quad \Delta H = -407 \text{ kJ/mol } NH_3$$

 $\text{R5}: \quad 2\text{NH}_3 + \text{NO} + \text{NO}_2 \rightarrow 2\text{N}_2 + 3\text{H}_2\text{O} \quad \Delta H = -378 \text{ kJ/mol NH}_3$

 $\label{eq:R7} \text{R7}: \quad 4\text{NH}_3 + 3\text{O}_2 \rightarrow 2\text{N}_2 + 6\text{H}_2\text{O} \quad \Delta H = -317 \text{ kJ/mol NH}_3$

 $R8: \quad 2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O \quad \Delta H = -276 \text{ kJ/mol } NH_3$

Readers are referred to [2] for the detailed description on the NH₃– SCR system. The SCR system must meet emission reduction targets under the dynamic conditions of the vehicle and for this reason robust control schemes have been developed.

Conditions that are encountered in practice for which the slippage of the reductant ammonia is unavoidable include incomplete NO_x conversion, release of the stored ammonia during an exhaust temperature increase, overdosing of NH_3 , and SCR catalyst deactivation due to aging [3,4]. An ammonia slip catalyst (ASC) is positioned downstream of the SCR catalyst, either as a short section on the same monolith "brick" or as a separate brick [5]. The function of this ASC is to oxidize ammonia directly into benign N_2 , global reaction R7 above. Precious group metals (PGM), particularly Pt and Rh, are effective ammonia oxidation catalysts [5–9]. However, they have poor selectivity towards desired product N_2 and high selectivity towards undesired products N_2O , NO and NO_2 [7,8,10–13] through global reactions R8 above, as well as:

 $\label{eq:R9} \text{R9}: \quad 4\text{NH}_3 + 5\text{O}_2 \rightarrow 4\text{NO} + 6\text{H}_2\text{O} \quad \Delta H = -226 \text{ kJ/mol NH}_3$

 $\label{eq:relation} R10: \quad 4NH_3+7O_2 \rightarrow 4NO_2+6H_2O \quad \Delta H=-142 \ kJ/mol \ NH_3$

The formation of NO and NO₂ (NO_x) in the ASC is counterproductive for an aftertreatment system that is designed to minimize the emissions of NO_x. Further, N₂O is a $270 \times$ more potent greenhouse gas (GHG) than CO₂ [14] and its emission is subject to emerging GHG regulations.

There is a need to develop highly active, selective and robust ammonia slip catalysts that can tolerate the demanding diesel exhaust environment while maintaining a high activity and selectivity over a wide range of temperature, space velocity, and gas composition. The current state-of-the-art ASC uses a bi-functional catalyst containing Pt/Al₂O₃ as the oxidative function and a Cu- or Fe-exchanged zeolite as the reductive function [5,15–17]. Recently, an ASC with a dual-layer architecture was communicated [5]. This architecture comprised a Pt/Al₂O₃ bottom layer with a Pt loading of 10 g/ft³ monolith and Cu- or Fe-exchanged zeolitic top layer. The working principle of the dual-layer design involves an intriguing counter-diffusion and reaction process. Ammonia that slips from the upstream SCR diffuses from the flowing gas to the multi-layer catalyst where it first encounters the SCR layer. Some of the NH₃ is stored and reacts in this layer while the remaining NH₃ diffuses to the underlying Pt/Al₂O₃ layer, where it is oxidized to a mixture of N₂, N₂O, NO, and NO₂. The NO and NO₂ product diffuses into the adjacent SCR layer where selective catalytic reduction by the counter-diffusing NH₃ occurs.

Recent studies have examined the synergies of oxidation and reduction on multi-component catalysts. Scheuer et al. [5,6,18–20] used a 2-D reactor model containing a reaction scheme with kinetics approximated by a spline interpolation of pre-computed rate data. Colombo et al. [17,21] developed the Layer + Surface Model (LSM) to simulate the dual-layer catalyst. The LSM considered the PGM layer to be a nonporous catalytic wall while the SCR top layer to be a conventional diffusion and reaction medium. Kamasamudram et al. [16] used an accelerated aging technique to study the change in ASC performance with age. In our previous study, we reported data for the dual-layer ASC comprising bottom Pt/Al₂O₃ and top Cu–ZSM-5 layers [22]. We demonstrated the trade-off between the NH₃ conversion and N₂ selectivity due to the variation of the SCR layer loading. In a more recent study

Download English Version:

https://daneshyari.com/en/article/146151

Download Persian Version:

https://daneshyari.com/article/146151

Daneshyari.com