

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICS INTERNATIONAL

Ceramics International 39 (2013) S119-S124

www.elsevier.com/locate/ceramint

Lead-free $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ relaxor ferroelectrics with temperature insensitive electrostrictive coefficient

Vu Diem Ngoc Tran^a, Thi Hinh Dinh^a, Hyoung-Su Han^a, Wook Jo^b, Jae-Shin Lee^{a,*}

^aSchool of Materials Science and Engineering, University of Ulsan, Ulsan, Republic of Korea ^bInstitute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany

Available online 23 October 2012

Abstract

The electric field-induced strain of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ (BNKT) ceramics modified with $BaZrO_3$ (BZ) was investigated as a function of composition and temperature. Unmodified BNKT ceramics revealed a typical ferroelectric butterfly-shaped bipolar *S*–*E* loop at room temperature, whose normalized strain (S_{max}/E_{max}) showed a significant temperature coefficient of 0.38 pm/V/K. As the BZ content increased in the solid solution up to 5 mol%, the ferroelectric BNKT gradually transformed to a relaxor. Finally, 5 mol% BZ-modified BNKT ceramics showed a typical electrostrictive behavior with a thermally stable electrostrictive coefficient (Q_{33}) of 0.025 m⁴/C², which is comparable to that of Pb(Mg_{1/3}Nb_{2/3})O₃ (PMN) ceramics that have been primarily used as Pb-based electrostrictive materials. © 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: C. Dielectric properties; C. Piezoelectric properties; D. Perovskites; E. Actuators

1. Introduction

Relaxor ferroelectrics (RFEs) are a special class of ferroelectrics (FE) that have peculiar properties: frequencydependent dielectric permittivity maxima; Curie-Weiss dependence of the permittivity versus temperature at temperature fairly higher than the maximum dielectric constant temperature (T_m) [1–4]. Relaxors have been widely studied not only due to their behaviors and properties but also due to various applications such as electromechanical sensors and actuators [5]. RFE behaviors were found in many Pbbased materials: $Pb(Mg_{1/3}Ta_{2/3})O_3$ [1], $Pb_3Fe_2WO_3-$ PbTiO₃ [3], Pb(Fe_{2/3}W_{1/3})O₃ – Pb(Mg_{1/3}Ta_{2/3})O₃ [6], Pb $(MgW)_{1/2}O_3 - Pb(FeTa)_{1/2}O_3$ [6], $Pb_3MgNb_2O_9 - PbTiO_3$ [7], $Pb_{1-x}La_x(Zr_{1-y}Ti_y)_{1-x/4}O_3$ [8], $Pb(Fe_{2/3}W_{1/3})O_3 -$ PbTiO₃ [9], Pb(Zn_{1/3}Nb_{2/3})O₃ – Pb(Zr_{0.55}Ti_{0.45})O₃ [10], and Pb₃MgNb₂O₉-PbZr_{0.47}Ti_{0.53}O₃ [11]. Recently, RFE phenomena were reported on lead-free materials including (Bi1/2 $Na_{1/2})_{1-x}Ba_xZr_vTi_{1-v}O_3$ [12], $Ba(Ti_{1-x}Zr_x)O_3$ [13], (K,Na) $(Nb,Sb)O_3 - LiTaO_3 - BaZrO_3$ [14], and $Bi_{1/2}Na_{1/2}TiO_3 Bi_{1/2}K_{1/2}TiO_3 - Bi(Zn_{1/2}Ti_{1/2})O_3$ [15].

Increasing demand for environmentally friendly materials in electronic industry leads researchers to exploit new lead-free materials which can replace Pb-based ceramics. Among various lead-free systems, solid solutions between $Bi_{1/2}Na_{1/2}TiO_3$ (BNT) and $Bi_{1/2}K_{1/2}TiO_3$ (BKT), hereafter abbreviated as BNKT, are considered as potential candidates due to their excellent electromechanical properties near the rhombohedral-tetragonal phase boundary [16,17]. In particular, recent studies on BNKT ceramics have reported large electric field-induced strains over 500 pm/V when modified with Sn [18,19], Nb [20], Ta [21], or co-doping with both Li and Ta [22].

On the other hand, the thermal stability of electric fieldinduced strain in a wide temperature range is important in highly reliable precision mechatronic systems. Seifert et al. [23] reported temperature-insensitive strains in BNKT– (K,Na)NbO₃ (KNN) ceramics by suppressing their converse piezoelectric effect via substitution of KNN for BNT. This work investigated temperature dependent electric fieldinduced strain properties of BNKT ceramics modified with BaZrO₃ (BZ) that is known to induce relaxor behaviors in BNT [12] as well as in BaTiO₃ [13]. Here we report a new lead-free RFE showing a temperature stable electrostrictive coefficient in the BZ-modified BNKT system.

^{*}Corresponding author. Tel.: +82 52 259 2286; fax: +82 52 259 1688. *E-mail address:* jslee@ulsan.ac.kr (J.-S. Lee).

^{0272-8842/\$ -} see front matter © 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved. http://dx.doi.org/10.1016/j.ceramint.2012.10.046

2. Experiments

Ceramic powders with compositions of $(1-x)Bi_{1/2}$ $(Na_{0.82}K_{0.18})_{1/2}TiO_3 - xBaZrO_3$ (BZ100x: x=0, 0.01, 0.02, 0.03, 0.04, and 0.05) were synthesized using a conventional solid state reaction route. Reagent grade Bi₂O₃, Na₂CO₃, K₂CO₃, TiO₂ (99.9%, High Purity Chemicals, Japan), BaCO₃, and ZrO₂ (99.9%, Cerac Specialty Inorganics, WI) powders were used as raw materials. The reagents were put in the oven at 100 °C for 24 h to remove moisture and then weighed according to the formula. The powders were mixed in ethanol with zirconia balls by ball milling for 24 h, dried at 80 °C for 24 h, and calcined at 850 °C for 2 h in an alumina crucible. After calcination, the powder was mixed with polyvinyl alcohol as a binder and then pressed into green discs with a diameter of 12 mm under a uniaxial pressure of 98 MPa. The green pellets were sintered at 1200 °C in covered alumina crucibles for 2 h in air.

For electrical measurements, a silver paste was screenprinted on both sides of a specimen and subsequently fired at 700 °C for 30 min. Temperature dependent dielectric properties were characterized using an impedance analyzer (HP4192A, Agilent, CA) attached with a computer programmable electric furnace at different frequencies (0.1–10 MHz) in a temperature range of 30–550 °C at heating and cooling rate of 2 °C/min. Their electrical polarization (*P*) and electromechanical strain (*S*) as a function of external electric field (*E*) were measured at 0.1 Hz with a 15 μ F measurement capacitance using a Sawyer-Tower circuit equipped with an optical sensor (Philtec, MD). Temperature dependent *P*(*E*) and *S*(*E*) were measured by using a commercial aixPES setup (aixACCT Systems GmbH, Germany).

3. Results and discussion

Fig. 1 shows the temperature dependent dielectric constant of BNKT modified with BZ measured at different frequencies. The dielectric maxima (ε_m) and peak temperature (T_m) decreased with increasing frequency for all samples, indicating that they are typical RFEs. The degree of frequency dispersion is more clearly explained by introducing a parameter ΔT_{relax} that has been applied to investigate the relaxation degree of ferroelectric ceramics [24,25].

$$\Delta T_{\text{relax}} = T_{\text{m}}(1 \text{ kHz}) - T_{\text{m}}(100 \text{ kHz})$$
(1)

Based on the experimental data, the value of ΔT_{relax} was calculated to be about 2 K for BZ0, 4 K for BZ3 and 5 K for BZ5, respectively. This result indicates that the frequency dispersion increases with BZ-modification.

The inverse dielectric constant at 100 kHz as a function of temperature was plotted in Fig. 2. From the curves, it is seen that the dielectric permittivity deviates from the Curie-Weiss law which can be represented by $\Delta T_{\rm m}$ that is given by the following equation [3].

$$\Delta T_{\rm m} = T_{\rm cw} - T_{\rm m} \tag{2}$$

where $T_{\rm cw}$ is defined as the temperature at which the dielectric permittivity starts to deviate from the Curie-Weiss law. When $T < T_{\rm cw}$, the paraelectric phase transforms into an ergodic relaxor state and thus starts to form polar nanoregions [3,4,24]. The $\Delta T_{\rm m}$ was found to be 201 K for BZ0, 144 K for BZ3, and about 166 K for BZ5, respectively.

For a ferroelectric with broad dielectric maxima, it is known that the diffuseness can be described by a modified Curie-Weiss law [3] as follows.

$$\frac{1}{\varepsilon} - \frac{1}{\varepsilon_{\rm m}} = \frac{(T - T_{\rm m})^{\gamma}}{C}, \ 1 \le \gamma \le 2$$
(3)

where *C* is the Curie constant and γ the indicator of diffuseness: if γ is near 1, the material is a normal ferroelectric; if γ is 2, the material can be considered as a perfect relaxor [3,14,24]. From the slope in the logarithmic plot of $(1/\epsilon-1/\epsilon_m)$ vs. $(T-T_m)$, as shown in insets of Fig. 2, γ can be determined. The γ was estimated to be 1.77 for BZ0, 1.87 for BZ3 and 2.00 for BZ5, suggesting that there happened a FE– RFE transition with increasing BZ content. Such a composition-induced FE–RFE crossover was also reported in other lead-free piezoelectric ceramics [13–15].

Fig. 3 presents the P-E hysteresis loops of BNKT-BZ ceramics as a function of BZ concentration and temperature. At room temperature (RT), both undoped and 1 mol% BZ-doped BNKT specimens revealed saturated P-E hysteresis loops with significant P_r and E_c values that were distinctive in normal ferroelectrics. On the other hand, specimens with higher BZ content (BZ4 and BZ5)

Fig. 1. Dielectric constant of BZ-modified BNKT ceramics as a function of temperature and frequency for: (a) BZ0, (b) BZ3, and (c) BZ5.

Download English Version:

https://daneshyari.com/en/article/1461624

Download Persian Version:

https://daneshyari.com/article/1461624

Daneshyari.com