

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICSINTERNATIONAL

Ceramics International 39 (2013) 3641-3649

www.elsevier.com/locate/ceramint

Effect of nonstoichiometry on the microstructure and microwave dielectric properties of Ba(Mg_{1/2}W_{1/2})O₃ ceramics

Jia Yin Wu, Jian Jiang Bian*

Department of Inorganic Materials, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China Received 31 July 2012; received in revised form 12 October 2012; accepted 12 October 2012

Available online 23 October 2012; accepted 12 October 2012

Available online 23 October 2012

Abstract

Effects of nonstoichiometry on crystal structure and the microstructure of double perovskite Ba(Mg_{1/2}W_{1/2})O₃ ceramics have been investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Raman spectrometry in this paper. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 8–11 GHz. The results show that small deviation from stoichiometric composition has little influence on the crystal structure such as B-site 1:1 ordering degree. Evaporation of BaO was confirmed during the sintering of BMW ceramics, which in turn produce more BaWO₄ phase. Ba-deficiency or W-excess in BMW could improve the sinterability and $Q \times f$ value, while Ba-excess or W-deficiency could suppress the formation of BaWO₄ at the expense of increase in sintering temperature and decrease in $Q \times f$ value. Mg nonstoichiometry has little effect on the variation of BaWO₄ content and $Q \times f$ value. Maximum $Q \times f$ value of about 140,000 GHz could be obtained for the Ba-deficient or W-excessive samples after sintering at 1500 °C/2 h or 1550 °C/2 h, respectively. All Mg-nonstoichiometric compositions exhibit high $Q \times f$ value of about 120,000 GHz after sintering at 1550 °C/2 h. All well-densified samples have dielectric permittivity of about 19–20 and τ_f value varied within the range of $-21 \sim -28$ ppm/°C.

© 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Double perovskite; Nonstoichiometry; Structure stability; Micowave dielectric properties

1. Introduction

It is well known that high cation ordering leads to large $Q \times f$ values of complex perovskite ceramics. Ba(Mg_{1/2} W_{1/2})O₃ (BMW) exhibits the double perovskite structure, in which the B site cations are 1:1 ordered due to their large difference in size and charge. In view of the high ordering degree, BMW is a promising candidate for high-Q dielectric ceramic, which has attracted many attentions [1–5]. Khalyavin et al. have studied the microstructure and microwave dielectric properties of Ba(Me_{1/2}W_{1/2})O₃ (Me = Mg, Ni, Zn) [2]. It was found that Ba(Mg_{1/2}W_{1/2})O₃ (BMW) double perovskite has dielectric properties of ε_r =15–17.6, $Q \times f$ =45,200 – 57,300 GHz, τ_f = –25 ppm/°C. BaWO₄ impurity phase appears at temperature > 1200 °C. Above its melting point of about 1475 °C [6], liquid phase is formed and remains at triple grained boundary junction as a

sintering additive. Microwave dielectric properties of $\varepsilon_r = 8.1$, $Q \times f = 57,500$ (GHz), $\tau_f = -78$ ppm/°C has been reported for BaWO₄ by Yoon et al. [7]. Bian et al. [4] investigated the microwave dielectric properties of $A_{1-3x/2}$ $\text{Lax}(\text{Mg}_{1/2}\text{W}_{1/2})\text{O}_3$ (A=Ba, Sr, Ca; $0.0 \le x \le 0.05$), and found that small amount of La-substitution for A site cation could suppress the formation of AWO4 at high temperature. Small level of La-substitution for Ba (x=0.02) substantially improves the $Q \times f$ value to more than 100,000 GHz, however increases the sintering temperature to about 1600 °C simultaneously due to the lack of BaWO₄ liquid phase. In our previous paper [5], we studied the structure stability and microwave dielectric properties of Ca-doped BMW $(Ba_2Mg_{1-x}Ca_xWO_6)$. The structure instability and decomposition of Ba2MgWO6 at high temperature are suggested to be caused by the large lattice strain energy due to the under-bonded Mg-O and over-bonded Ba-O bonds. This view is supposed be generalized to the instability of other complex perovskites such as Ba(Zn_{1/2}W_{1/2})O₃, $Ba(Zn_{1/3}Nb_{2/3})O_3$ and $Ba(Mg_{1/3}Ta_{2/3})O_3,$ in which barium

^{*}Corresponding author. Fax: +86 21 56331697.

E-mail address: jjbian@shu.edu.cn (J. Jiang Bian).

tungstate, barium niobate and barium tantalate could be easily formed at high temperature, respectively. Small amount of Cadoping is also useful to the suppression of BaWO₄ formation due to the increase in Mg/Ca-O bond strength and decrease in Ba-O bond strength. However it still cannot completely suppress the decomposition of Ba₂Mg_{1-x}Ca_xWO₆ at the sintering temperature above 1400 °C. Excellent combined microwave dielectric properties with $\varepsilon_r = 20.8$, $Q \times f = 120,729$ GHz, and $\tau_f = 0$ ppm/°C could be obtained by small level of Ca-doping (x=0.1). However the remained amorphous MgO and BaO, which accompanied with the appearance of BaWO₄ in BMW ceramic, considerably decrease the $Q \times f$ value when the sample was stored under ambient conditions for a long time due to the hygroscopy of MgO and BaO in the air humidity [5]. Complete suppression of the decomposition of BMW during sintering is therefore of crucial importance for practical application.

The decomposition of Ba₂ZnWO₆ at high temperature is confirmed to be caused by the sublimation of ZnO due to its high partial pressure in air [8]. However, in the case of Ba₂MgWO₆, the vaporization of BaO rather than MgO should be expected due to its comparatively high vapor pressure at high temperature [9]. The possible vaporization of BaO would in turn facilitate the decomposition of Ba₂MgWO₆ and shift the bulk composition chemistries toward the WO₃-richer portion of the system, which would produce more secondary phases including BaWO₄ and MgO according to the mass balance equation. Therefore excessive BaO content is supposed to hinder the appearance of BaWO₄. For many

barium based complex preovskites such as $Ba(Mg_{1/3}Ta_{2/3})O_3$, $BaZn_{1/3}Nb_{2/3}O_3$, it is has been reported that small deviations from its stoichiometric composition have pronounced effects on the phase constituent, sinterability, B-site cations ordering and microwave dielectric properties [10–13]. On the whole, small amount of A-site or B'-site deficiency around the stoichiometric composition usually improves the sinterability and ordering degree of B site cations, hence considerably increases the microwave quality factor. But over deficiency of A-site cation would result in the appearance of impurity phases such as barium niobates or barium tantalates, which leads to the decrease in $Q \times f$ value. Opposite effect is observed for the A-site or B'-site excessive compositions.

In this paper, therefore, we have investigated the effect of A, B' and B" site cation nonstoichiometry on the phase composition, microstructure and microwave dielectric properties of BMW.

2. Experimental

The samples of $Ba_{1+x}(MgW)_{1/2}O_3$ (x = -0.015, -0.010, -0.005, 0, 0.005, 0.010 and 0.015), $Ba(Mg_{1+y}W)_{1/2}O_3$ (y = -0.02, -0.01, 0, 0.01 and 0.02) and $Ba(MgW_{1+z})_{1/2}O_3$ (z = -0.02, -0.01, 0, 0.01 and 0.02) were prepared by a conventional solid-state reaction process from BaCO₃ (99.7%), MgO(99.7%), and WO₃(99.5%) starting materials. The starting materials were weighed according to the above formula and ball milled in ethanol with zirconia milling media for 24 h, then dried and calcined at 1200 °C for 2 h in

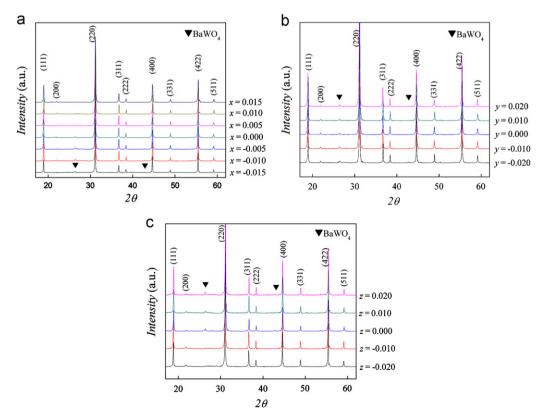


Fig. 1. Powder XRD patterns for (a) $Ba_{1+x}(MgW)_{1/2}O_3$, (b) $Ba(Mg_{1+y}W)_{1/2}O_3$ and (c) $Ba(MgW_{1+z})_{1/2}O_3$ sintered at 1500 °C/2 h.

Download English Version:

https://daneshyari.com/en/article/1461726

Download Persian Version:

https://daneshyari.com/article/1461726

Daneshyari.com