

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Ceramics International 38 (2012) 5775-5781

www.elsevier.com/locate/ceramint

The effects of raw materials particle size and salt type on formation of nano-CaZrO₃ from molten salts

R. Fazli^{a,*}, M. Fazli^b, F. Golestani-fard^a, A. Mirhabibi^a

^a School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran ^b Department of Materials Science and Engineering, University of Malek Ashtar, Tehran, Iran

Received 18 March 2012; received in revised form 7 April 2012; accepted 8 April 2012 Available online 15 April 2012

Abstract

Nano-CaZrO₃ was successfully synthesized at 800 °C using the molten-salt method, and the effects of salt type and raw materials particle size on the formation of CaZrO₃ were investigated. Na₂CO₃, CaCl₂, nano-ZrO₂ and micro-ZrO₂ were used as starting materials. On heating, Na₂CO₃ reacted with CaCl₂ to form NaCl and in situ CaCO₃. Na₂CO₃–NaCl molten eutectic salt provided a liquid medium for reaction of CaCO₃ and ZrO₂ to form CaZrO₃. The results demonstrated that in both nano- and micro-ZrO₂ inclusive samples, CaZrO₃ started to form at about 700 °C and that, after the temperature was increased to 1000 °C, the amounts of CaZrO₃ in the resultant powders increased with a concomitant decrease in CaCO₃ and ZrO₂ contents. After washing with hot-distilled water, the samples containing nano- and micro-ZrO₂ heated for 3 h at 800 °C and 1000 °C, were single-phase CaZrO₃ with 70–90 nm and 400–450 nm particle size, respectively. Also, the synthesis process was completed in lower temperatures using eutectic salts. Furthermore, the synthesized CaZrO₃ particles retained the size and morphology of the ZrO₂ powders, which indicated that a template formation mechanism dominated the formation of CaZrO₃ by molten-salt synthesis.

© 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: Molten salt method; Nanomaterials; Calcium zirconate

1. Introduction

Calcium zirconate (CaZrO₃) is an important raw material for refractories and advanced ceramics due to its excellent thermal and electrical properties such as high melting point (2340 °C), high dielectric permittivity, and low dissipation factor [1–3]. There are several methods for the synthesis of this material. CaZrO₃ powder is conventionally synthesized via a high temperature (1500 °C) solid–solid reaction of powdered CaO (or CaCO₃) and zirconia (ZrO₂) (conventional mixed oxide synthesis, CMOS). As the reactions are generally controlled by slow diffusion mechanisms, highly reactive precursor powders, high temperatures, and long times have to be used for the reactions to achieve completion. The resultant product is a hard mass, which often needs to be crushed and ground to achieve the desired particle size [4].

E-mail address: rhmnfazli@yahoo.com (R. Fazli).

Another methods such as electro fusion [5], wet chemical [6-8], combustion [9] and mechanical alloying (MA) [10] have been reported for the synthesis of calcium zirconate. Almost all above methods are not commodious, because their synthesis temperatures are high and thus need so much thermal energy and time. Therefore, it is necessary to follow methods decreasing synthesis temperature and time. Besides the above techniques, a low-temperature synthesis technique, molten salt synthesis (MSS), is beginning to attract interest. In this method, as a salt is used as liquid medium, the reactions are faster and synthesis is complete in significantly lower temperature and time [4,11–13]. Li et al. investigation is perhaps the most important investigation on the synthesis of CaZrO₃ via molten salt method that prepared CaZrO₃ powder in 1050 °C and 5 h [4]. In this work, nanoparticles of CaZrO₃ have been synthesized by heating of Na₂CO₃, CaCl₂ and ZrO₂ mixture and the effects of ZrO₂ particle size and salt type on microstructure and synthesis temperature have been investigated. Also, synthesis mechanism has been analysed.

^{*} Corresponding author. Tel.: +98 937 2139453.

^{0272-8842/\$36.00 © 2012} Elsevier Ltd and Techna Group S.r.l. All rights reserved. http://dx.doi.org/10.1016/j.ceramint.2012.04.024

2. Experimental procedure

 Na_2CO_3 (Merck, Germany, $D_{50} = 1 \text{ mm}$, 99.5% pure), CaCl₂ (Merck, Germany, $D_{50} = 4 \text{ mm}$, 99.5% pure), nano- ZrO_2 (Neutrino, Germany, $D_{50} = 60$ nm, >99% pure) and micro-ZrO₂ (Merck, Germany, $D_{50} = 250$ nm, 99.5% pure) were used as starting materials. Two mixtures were prepared from starting materials. The first was a mixture of Na₂CO₃, CaCl₂ and nano-ZrO₂, and the second was a mixture of Na₂CO₃, CaCl₂ and micro-ZrO₂. Firstly, Na₂CO₃ and CaCl₂ were mixed and then heated 12 h at 150 °C to dry completely. Agglomerated nano-ZrO₂ was dispersed in distilled water that its pH was controlled to 4 using hydrochloric acid. For more dispersion, the suspension was placed 1 h in ultrasonic probe. Then, Na₂CO₃-CaCl₂ mixture was added to completely disperse nano-ZrO₂ and the obtained mixture was stirred 1 h to homogenize extremely. The mixture was fully dried at 120 °C for 12 h. Molar ratio of mixture is ZrO₂:CaCl₂:- $Na_2CO_3 = 1:1:1.2$. Agglomerations of obtained powder that is a completely homogenous mixture, were broken using an agate mortar and then sifted to pass through a 325 mesh screen (45 μ m). Dry mixing was used for preparation of micro-ZrO₂ inclusive mixture. For this purpose, Na₂CO₃, CaCl₂ and micro-ZrO₂ were completely mixed and ground at above molar ratio using an agate mortar to pass through a 100 mesh screen. Finally, both mixtures (20 g) were placed in an alumina crucible covered with an alumina lid, heated to 700, 800, 900 and 1000 °C and held for 3 h. The heating and cooling rates were 3 °C/min and 5 °C/min, respectively. After cooling to room temperature, the solidified mass was washed and filtered in hot-distilled water five times to remove the salts. The obtained powder was then dried at 120 °C for 4 h. The phase formation and morphology of the synthesized powders were characterized via X-ray diffraction (XRD, Philips pw3710), scanning electron microscopy (SEM, Tescan Vega II), and transition electron microscopy (TEM, CM 200, Philips), respectively.

3. Results and discussion

DTA/TG analysis was performed to determine the proper reaction temperature range as well as the reaction order in the molten-salt method. DTA/TG curve of Na₂CO₃, CaCl₂ and nano-ZrO₂ mixture has been shown in Fig. 1. The DTA curve exhibits an endothermic peak (peak a), which is associated with a slow weight loss (10%) in the TG curve at 100 °C. This weight loss is attributed to dehydration of the precursors. The small endothermic peak at approximately 150 °C (peak b) is related to the reaction between Na₂CO₃ and CaCl₂. The big endothermic peak at about 600 °C (peak c) is attributed to melting of Na₂CO₃–NaCl eutectic salt. The exothermic peak at approximately 700 °C (peak d) which is associated with a slow weight loss in the TG curve is related to formation of CaZrO₃. The small exothermic peak at 800 °C (peak e) is interpreted as the crystallization of the CaZrO₃ phase.

Fig. 2 shows the DTA/TG curve of Na_2CO_3 , $CaCl_2$ and micro-ZrO₂ mixture. According to above, peaks a, b, c, d and f

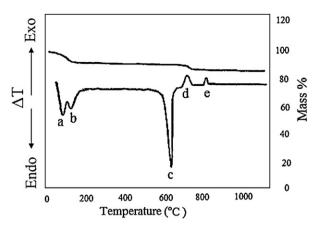


Fig. 1. DTA/TG curve of Na₂CO₃, CaCl₂ and nano-ZrO₂ mixture.

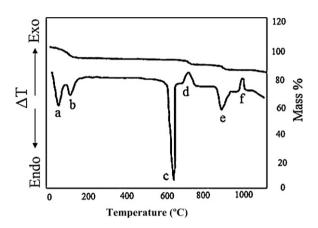


Fig. 2. DTA/TG curve of Na₂CO₃, CaCl₂ and micro-ZrO₂ mixture.

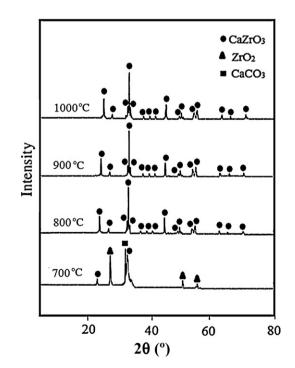


Fig. 3. XRD patterns of nano- ZrO_2 inclusive samples heated for 3 h at different temperatures.

Download English Version:

https://daneshyari.com/en/article/1461971

Download Persian Version:

https://daneshyari.com/article/1461971

Daneshyari.com