

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICS INTERNATIONAL

Ceramics International 38 (2012) 1523-1527

www.elsevier.com/locate/ceramint

Sintering, crystallization and mechanical properties of a gel-cast cordierite glass-ceramic body

H. Bartar Esfahani, B. Eftekhari Yekta*, V.K. Marghussian

Ceramics Division, Department of Materials, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran

Received 27 August 2011; received in revised form 18 September 2011; accepted 19 September 2011 Available online 22 September 2011

Abstract

Gel-cast bodies based on cordierite glass–ceramics were prepared by sintering route. Effect of monomer and cross-linker values as well as sintering temperatures on bending strength of dried and sintered bodies were investigated. While the bending strength of dried gel-cast bodies was increased with the percentage of the polymers, bending strength of sintered bodies was changed conversely with them. Therefore, it was concluded that the least amount of monomer acrylamid (3 wt.%) and moderate amount of cross-linker (~0.75 wt.%) guarantees the required dried and fired bending strengths. The optimum sintering temperature was about 1270 °C and specimens that was fired at this temperature showed a maximum bending strength of about 200 MPa.

© 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: D. Cordierite; D. Glass ceramics; Gel-casting

1. Introduction

Gel-casting is a relatively simple and near-net-shape forming technique for ceramic components in which ceramic fluid slurries containing a solution of monomers can be transformed into rigid and non-porous cavities without liquid removal [1]. Due to the internal gelation of this solution at a certain temperature, the ceramic particles fix together and form as the mold. Finally, the body is dried and sintered, after being extracted from the mold [2].

Using a relatively small amounts of polymers (2–6 wt.%) and catalyst is one of the main characteristic of this method [3]. These materials have no detrimental effect on solid particles and do not leave considerable impurities after burnout. Furthermore, this technique is used for vast ranges of ceramic and even metal powders [3–7]. Green bodies prepared by this process show a relatively high strength (3–4 MPa) and can be machined at considerable cost saving [8].

Glasses and glass-ceramics are normally shaped by melt casting methods. However, when a glass or a glass-ceramic based composite is desired or it has a complex shape, melt casting will not be applicable. At these conditions one should profit by powder based shaping methods, e.g. pressing, extrusion, injection molding, slurry casting, gel-casting, etc., and sintering of shaped specimen.

Cordierite based glass-ceramics which cannot be excluded from the above-mentioned rules can be prepared by a simultaneously sintering and crystallization of its compacted glass powder [9]. The above-mentioned reasons convinced the present authors to apply the gel-casting for shaping of this glass-ceramic and investigate the influence of polymers and their ratio on the drying and sintering behaviors of the formed specimens.

2. Experimental procedure

The glass composition which was used contained SiO₂ 49.02 wt.%, Al₂O₃ 33.35 wt.%, MgO 13.19 wt.%, V₂O₅ 2.96 wt.% and BaO 1.5 wt.% [10]. The raw materials used to make the glass were acid washed silica sand (with purity more than 99.8%) and reagent grade aluminum hydroxide (BDH 3059090), magnesium oxide (Applichem A2387.1000), vanadium oxide (Merck 8240250) and barium carbonate (Merck 1714), respectively. The thoroughly mixed materials were melted in an alumina crucible at 1630 °C in electric kiln

^{*} Corresponding author. Tel.: +98 21 77240157; fax: +98 2177240480. *E-mail address:* beftekhari@iust.ac.ir (B. Eftekhari Yekta).

^{0272-8842/\$36.00 © 2011} Elsevier Ltd and Techna Group S.r.l. All rights reserved. doi:10.1016/j.ceramint.2011.09.036

for 1 h. The molten glasses were then quenched in cold distilled water.

The frit obtained was ground in a planetary mill for various times until its particle size distribution lied exactly within the Andreasen range. The particle size distribution of glass powder was determined by a laser particle size analyzer (Analysette 22, Fritch, Idar-Oberstein, Germany). The crystallization temperature of the glasses was determined by differential thermal analysis (STA, model 1640, Polymer Laboratories, Amherst, MA) using 10 mg of glass powders in a platinum crucible and in air atmosphere at a heating rate of 10 °C min⁻¹.

Acrylamide (AM) (Merck Prolabo 79-06-1), N',N-ethylene bisacrylamide (MBAM) (Merck Prolabo 110-26-9), ammonium per sulfate (APS) (Merck 1.01201.0500) and tetra methyl ethylene diamine (TEMED) (Merck 1.10732.0100) were used as monomer, cross-linker, reaction initiator and catalyst, respectively.

Slurries were prepared by dispersing of 70 wt.% glass powder in water-based solution of the monomers and dispersant, and were completed with adding of the initiator and the catalyst.

The slurries were stirred for 5 min and then were cast into a polyethylene container and remained there for 24 h to ensure a complete polymerization. After that, the samples were removed and dried naturally in room temperature for 48 h and then in an electric dryer at 80 °C for 24 h. The flexural strength of specimens was determined by three point bending test on specimens of 50 mm × 10 mm × 5 mm in size, at a span of 46 mm and cross head speed of 0.6 mm min⁻¹.

3. Results and discussion

3.1. Thermal behaviors of specimens

Fig. 1 shows the STA thermographs of a cordierite-based gel-cast glass specimen containing 5 wt.% AM, 2.5 wt.% MBAM and 0.4 wt.% initiator. Accordingly, the polymers are exhausted at about 350 °C, which is associated with a small exothermic peak in the DTA trace and a weight loss in the TG thermograph, respectively. To identify the responsible reactions for arising the second and the third exothermic peaks in the DTA trace, the gel-cast specimens were heated at 850 and 930 °C for 2 h. Fig. 2 depicts the X-ray diffraction patterns of

Fig. 1. STA thermographs of the powdered gel-cast green body.

Fig. 2. X-ray diffraction patterns of the gel-cast samples after heat treatment for 2 h at 850 °C and 930 °C, (α) α -cordierite; (μ), μ -cordierite.

the fired specimens. Based on these results, formation of μ cordierite and its conversion to α -cordierite are responsible for the second and the third exothermic peaks, respectively. These two fired samples were completely porous; therefore, they were fired at higher temperatures, between 1020 and 1320 °C for 2 h. Fig. 3 shows the X-ray diffraction patterns of the resulted samples. Based on these results, cordierite (2MgO·2Al₂O₃·5SiO₂) is the sole crystalline phase that has been precipitated gradually with increasing firing temperature.

Fig. 4 shows the relative densities of the above-mentioned sintered specimens. As it was expected, the relative density of each specimen increased gradually to its optimum value with increasing of firing temperature. This temperature (about 1270 °C) is quite above the crystallization peak temperature of the glass. According to previous report [10], about 92 wt.% cordierite was precipitated when the glass was heat treated at its crystallization peak temperature. Generally, this widespread crystallization will increase the viscosity of glass and retards viscous flowing of residual glass phase [11–13], which is necessary for its densification. Therefore, the glass specimen compulsorily was densified at higher temperatures.

1524

Fig. 3. X-ray diffraction patterns of the samples after firing at different temperatures with a heating rate of 10 $^{\circ}$ C min⁻¹, (α), α -cordierite.

Download English Version:

https://daneshyari.com/en/article/1462553

Download Persian Version:

https://daneshyari.com/article/1462553

Daneshyari.com