

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICS INTERNATIONAL

Ceramics International 39 (2013) 6631-6636

www.elsevier.com/locate/ceramint

Template assisted fabrication of TiO₂ and WO₃ nanotubes

Chien Chon Chen^a, Chin-Hua Cheng^b, Chung-Kwei Lin^{c,*}

^aDepartment of Energy Engineering, National United University, Miaoli 36003, Taiwan ^bDepartment of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan ^cSchool of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan

Received 6 January 2013; received in revised form 28 January 2013; accepted 28 January 2013 Available online 8 February 2013

Abstract

Anodic aluminum oxide (AAO) templates with diameters of 200–500 nm were generated by anodizing a commercial aluminum (Al) substrate (99.7%) in 1 vol% phosphoric acid (H₃PO₄), with an applied voltage of 195 V. Titania and tungsten oxide nanotubes (NTs) were successfully grown on AAO template by the sol–gel process. Thermal gravimetric analyzer (TGA) curves showed that gel can be transfered to nanocrystalline particles after 19% weight loss of water molecule by evaporation. The results showed that the nanocrystalline TiO₂ NTs presented at 200 °C, and grains grew as temperature increased. At a temperature of 550 °C, the (101), (103), (004), (112), (200), (105), and (211) planes of anatase TiO₂ were detected clearly, whereas tungsten oxide NTs are amorphous after heat treatment at 200 °C or 300 °C. But the (110), (111), (002), (022), (222), and (004) planes of γ -WO₃ phase can be observed obviously after the heat treatment at 400 °C.

© 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Sol-gel; Titania; Tungsten oxide; Nanotube; AAO

1. Introduction

Many nanostructures have very interesting properties. For example, titania has been used in various applications such as environment [1], catalysis [2], dielectrics [3], optoelectronics [4], sensors [5], and solar cells [6–8]. Also, WO₃ nanopores show excellent ion intercalation properties (electrochromic devices, charge storage) [9–13]. The oxides have varied stable phases. For example, titanium dioxide has three stable phases: anatase, brookite, and rutile [14]. Tungsten oxide has four: α -WO₃ (tetragonal, 1010–1170 °C), β -WO₃ (orthorhombic, 600–1170 °C), γ -WO₃ (monoclinic, 290–600 °C), and δ -WO₃ (triclinic, 230–290 °C) [15]. The transformation of those phases depends on the annealing temperature at a constant oxygen pressure, as in an air furnace.

It is also interesting that in the case of titanium alloys, small amounts of the alloying element can drastically affect the properties, while the unique nano-tubular morphology is completely retained. For example, TiW (0.2 at%) alloys show a strongly enhanced electrochromic response and improved photocatalytic properties [16]. Yang et al. [17] doped WO₃ into TiO₂ NT to enhance the photo-catalysis property. Smith and Zhao [18] produced a TiO₂/WO₃ core/ shell structure that enhances the separation rate of electrons and holes. Xiao et al. [19] coated WO₃ particles on TiO₂ NT; this nano-composite material can reduce the recombination rate of electrons and holes. Schmuki made TiO₂–WO₃ composite nanotubes by TiW alloy anodization; such nanotubes have an excellent dye-absorbance ability [20].

AAO has characteristics of being light and transparent, with large surface, good mechanical strength, and flexibility, making it a candidate material for the template. In this work, AAO template was made by anodization; TiO_2 and WO₃ NTs were made by the sol–gel deposition on AAO. We also examined the morphology and crystallization characteristics in the above nano-materials. The effects of post heat-treatment on the morphology and phase transformation of TiO₂ NT and WO₃ NT were examined by SEM, TEM, EDS, XRD, XAS, XPS, TGA, and FTIR analysis.

^{*}Corresponding author. Tel.: +8862 2736 1661x5115.

E-mail address: chungkwei@tmu.edu.tw (C.-K. Lin).

^{0272-8842/\$ -} see front matter © 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved. http://dx.doi.org/10.1016/j.ceramint.2013.01.100

2. Experimental procedures

2.1. AAO template fabrication

Anodic aluminum oxide (AAO, Al₂O₃) templates with a pore size of 10-500 nm were generated by a two-step anodizing process on a commercial aluminum (Al) substrate (99.7%) in acid solutions of sulfuric acid (H₂SO₄), oxalic acid $(COOH)_2$, or phosphoric acid (H_3PO_4) . The Al substrate was first ground to # 1000 by SiC waterproof paper. Then the residual stress of the Al substrate was released by annealing at 550 °C for 1 h in an air furnace. After annealing, the sample was electro-polished in a bath consisting of 15 vol% perchloric acid (HClO₄, 70%), 70 vol% ethanol (C₂H₆O, 99.5%), and 15 vol% monobutylether ((CH₃(CH₂)₃OCH₂-CH₂OH), 85%) with 42 V (DC) applied for 10 min and titanium foil used as a counter. AAO templates with diameters of 200-500 nm were generated by anodizing a commercial aluminum (Al) substrate (99.7%) in 1 vol% phosphoric acid (H₃PO₄), with applied voltages of 195 V and pore widening using 5 vol% H₃PO₄ for 0.5-4 h. A more detailed description of the AAO process can be found in our previous study [21–23].

2.2. TiO₂ NT formation in AAO

The TiO₂ NT was prepared by immersing the Al₂O₃ template in 0.02 M titanium fluoride (TiF₄) solution. The immersion steps were as follows: (1) adjust pH value of DI-water to 1.0–1.3 using hydrochloric acid (HCl); (2) add TiF₄ into DI-water; (3) immerse sample into TiF₄ solution for 10 min; (4) adjust pH value of TiF₄ solution to 3.0–3.3 using NH₄OH (ammonium hydroxide); and (5) immerse sample into TiF₄ solution for 120 min. After the immersion steps, the sample was annealed at 200, 300, 400, and 550 °C for 1–3 h to obtain anatase TiO₂ NT on the Al₂O₃ template.

2.3. WO₃ NT formation in AAO

The WO₃ NT was prepared by immersing Al₂O₃ template into tungsten (VI) chloride (WCl₆) containing sol–gel as follows: (1) make tungsten precursor in ethanol (C₂H₅OH) solvent with 10 wt% WCl₆ and 2 h stirring; (2) add 20 vol% surface-active agent of 2,4-pentanedione (C₅H₈O₂) to the solution with 2 h stirring again to form tungsten-containing sol; (3) add 0.15 vol% DI-water to the solution with 12 h stirring to form tungsten-containing sol–gel; (4) immerse sample in tungsten (VI) chloride (WCl₆) containing sol–gel for 1 h and (5) after the immersion steps, the sample was annealed at 550 °C for 1 h to obtain γ -phase (monoclinic) WO₃ NT on the Al₂O₃ template.

2.4. TiO_2/WO_3 NTs formation in AAO

The TiO₂ NT was first formed on the AAO template by TiF₄ solution, and then the sample was immersed in 10 wt% sodium tungstate dihydrate (Na₂WO₄·2H₂O)

Fig. 1. TGA curves of (a) TiO_2 NT between 25 and 600 $^\circ C$ and (b) WO_3 NT between 25 and 900 $^\circ C.$

Table 1

Summary of the experimental procedures of methods, solution, and heat treatment temperature.

Materials	Fabrication method	Crystallization
AAO TiO ₂ NT	1 vol% H ₃ PO ₄ , 195 V anodization and 5 vol% H ₃ PO ₄ pore widening for 0.5–4 h Sol–gel: 0.02 M TiF ₄ (pH:3.0–3.3) for 2 h	Amorphous 550 °C for anatase phase
WO ₃ NT	Sol-gel: 10 wt% WCl ₆ ,20 vol% $C_5H_8O_2$ and 15 vol% C_2H_5OH for 17 h	400 °C for γ -phase

Download English Version:

https://daneshyari.com/en/article/1462796

Download Persian Version:

https://daneshyari.com/article/1462796

Daneshyari.com