

Available online at www.sciencedirect.com

SciVerse ScienceDirect

CERAMICS INTERNATIONAL

Ceramics International 38 (2012) 3011-3016

www.elsevier.com/locate/ceramint

Anti-reduction of Ti⁴⁺ in Ba_{4.2}Sm_{9.2}Ti₁₈O₅₄ ceramics by doping with MgO, Al₂O₃ and MnO₂

Xiaogang Yao*, Huixing Lin, Wei Chen, Lan Luo

Information Materials and Devices Research Center, Shanghai Institute of Ceramics, Chinese Academy of Science, 1295 Dingxi Road, Shanghai 200050, PR China

Received 14 October 2011; received in revised form 26 November 2011; accepted 29 November 2011 Available online 6 December 2011

Abstract

The anti-reduction of T_1^{4+} ions in $Ba_{4,2}Sm_{9,2}Ti_{18}O_{54}$ (BST) ceramics at high sintering temperature over 1300 °C was investigated. MgO, Al_2O_3 and MnO_2 were added separately to suppress the reduction of T_1^{4+} ions so as to improve the microwave dielectric properties of BST ceramics. The microstructure of BST ceramics was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) was used to study the electroconductivity of BST ceramics and valency changes of T_1^{4+} ions. The results showed that MgO or Al_2O_3 , when acting as an acceptor, could effectively suppress the reduction of T_1^{4+} ions and significantly improve the $Q \times f$ values of BST ceramics at the cost of dielectric constant. Meanwhile, MnO_2 as an oxidant had also improved the $Q \times f$ values but with no decrease in dielectric constant. Excellent microwave dielectric properties were achieved in $Ba_{4,2}Sm_{9,2}Ti_{18}O_{54}$ ceramics doped with 0.2 wt.% Al_2O_3 sintered at 1340 °C for 3 h: $\varepsilon_r = 76.9$, $Q \times f = 10,120$ GHz and $\tau_f = -22.7$ ppm/°C.

© 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Keywords: A. Sintering; C. Dielectric properties; D. Perovskite; Ceramics; Crystal structure

1. Introduction

The rapid progress of modern mobile phones and satellite communication systems has created a high demand for the miniaturization of microwave devices. Ceramics with high ε_r , high $Q \times f$ values and near-zero τ_f have been extensively used for miniaturizing the dimensions of the resonators and filters [1].

 $Ba_{6-3x}R_{8+2x}Ti_{18}O_{54}$ (R = La, Pr, Nd, Sm) solid solution systems are recognized as an important series of high permittivity microwave dielectric ceramics with dielectric constant ranging from 80 to 130 [2,3]. $Ba_{6-3x}Sm_{8+2x}Ti_{18}O_{54}$ system, as a member in this family, exhibits $\varepsilon_r \approx 80$, $Q \times f \approx 8000$ GHz and $\tau_f \approx -8$ ppm/°C at x = 0.6 [4]. Researches on this solid solution are commonly focused on these aspects: (a) control the τ_f value to near zero [5–7]; (b) substitution of A or B site in tungsten bronze structure [8–10]; (c) low temperature sintering [11–13]. Nevertheless,

little attention has been attached to the improvement on $Q \times f$ values, which is of vital importance to microwave devices.

As reported by Templeton and Pullar [14,15], titanium dioxide ceramics tend to deoxidize at high temperature above 1300 °C or with deficient oxygen supply during sintering. The deoxidized reaction undergoes as below:

$$TiO_2 \rightarrow TiO_{2-x} + x/2O_2 \uparrow$$
 (1)

Oxygen vacancies appear and tend to catch electrons to form F-color centers. A dark hole appears in central part of the sample when these electrons are emitted by combining with Ti^{4+} ions near-by to form $[\mathrm{Ti}^{4+}\mathrm{e}^-]$, which drastically increases the dielectric loss of TiO_2 ceramics. Similar dark holes have also been found in BST ceramics, with an undesirable impact on microwave dielectric properties. Templeton and Wang [14] reported that improved $Q \times f$ values were attained by adding a divalent or trivalent acceptor ion that has approximately equal radius to that of Ti^{4+} into TiO_2 ceramic. Whether this is also true for BST ceramics or not still needs to be demonstrated. Doping with a transition metal oxide, functioning as an oxidant, such as MnO_2 for instance [15], can also prevent the

^{*} Corresponding author. Tel.: +86 21 5241 4112; fax: +86 21 5241 3903. E-mail address: rockyao@student.sic.ac.cn (X. Yao).

reduction of Ti⁴⁺ as shown below:

$$Mn^{4+} + Ti^{3+} \rightarrow Mn^{3+} + Ti^{4+}$$
 (2)

$$Mn^{3+} + Ti^{3++} \rightarrow Mn^{2+} + Ti^{4+}$$
 (3)

In the present study, MgO, Al₂O₃, MnO₂ are added to Ba_{4.2}Sm_{9.2}Ti₁₈O₅₄ ceramics and the mechanism of antireduction of Ti⁴⁺ by acceptor-doping has been investigated.

2. Experimental procedure

 $Ba_{4.2}Sm_{9.2}Ti_{18}O_{54}$ ceramics were prepared by conventional solid-state reaction method. The raw materials—BaCO₃ (99.9%), Sm_2O_3 (99.9%), and TiO_2 (99.9%) powders were weighed according to the desired stoichiometry of $Ba_{4.2}Sm_{9.2}$ - $Ti_{18}O_{54}$. The powders were ground in deionized water for 24 h with ZrO_2 balls. The mixture was dried at 120 °C, and then calcined at 1150 °C in air for 3 h [16]. The calcined powders were mixed with 0.2 wt.% MgO (99.9%), Al_2O_3 (99.9%) and MnO_2 (99.5%) separately. Afterwards the mixtures were milled for 24 h, dried at 120 °C and granulated with polyvinyl alcohol (PVA). The granules were preformed and then sintered at 1300–1380 °C in air for 3 h with a heating rate of 5 °C/min.

The crystalline phase was identified using a Rigaku D/max 2550V X-ray diffractometer with a conventional Cu-K α radiation in the range of 10– 70° with a step size of 0.02° . The microstructure of BST ceramics was examined by a Hitachi S-4800 field emission scanning electron microscope. An ESCAlab250 X-ray photoelectron spectroscopy was used to observe the variation of electroconductivity and valency in center and edge of sintered BST samples. The method developed by Hakki and Coleman [17] was used to measure the microwave dielectric properties of the polished pellets. The measurement frequencies range from 3 to 4 GHz. All the microwave measurements were used in the TE₀₁₁ mode of an Agilent E8363A PNA series network analyzer. τ_f was tested in the temperature range from 20 to 80 °C and can be calculated by noting the change in resonant frequency as:

$$\tau_f = \frac{f_2 - f_1}{60 f_1} \tag{4}$$

Here, f_1 and f_2 represent the resonant frequencies at 20 and 80 °C, respectively.

3. Results and discussion

3.1. Crystalline phase

Fig. 1a shows the X-ray diffraction patterns of $Ba_{4.2}Sm_{9.2}$ - $Ti_{18}O_{54}$ ceramics doped with none, MgO, Al_2O_3 and MnO_2 sintered at 1340 °C for 3 h. Only a single $BaSm_2Ti_4O_{12}$ phase is identified for a small amount of addition. However, it is found in Fig. 1b that diffraction peaks of BST ceramics doped with Al_2O_3 shift slightly toward higher 2θ degree values, while those doped with MgO or MnO_2 are exactly the opposite. It can be deduced, according to Bragg's law, that doping with Al_2O_3 has decreased the lattice parameters, but MgO or MnO_2 have

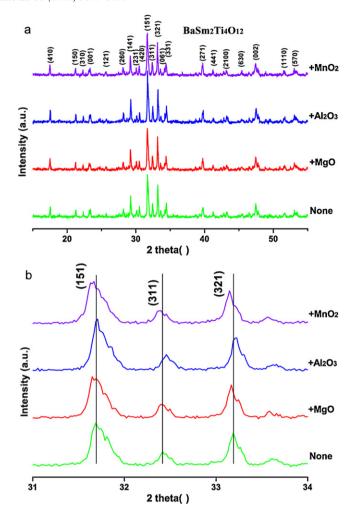


Fig. 1. Whole (a) and partial (b) X-ray diffraction patterns of $Ba_{4.2}Sm_{9.2}$. $Ti_{18}O_{54}$ ceramics doped with none, MgO, Al_2O_3 and MnO_2 sintered at 1340 $^{\circ}C$ for 3 h.

expanded the lattice structure. The lattice parameters and volumes of BST ceramics shown in Table 1 are in accordance with what we deduced. We can infer from Table 2 that the lattice structure contracts only if the substitution of Ti⁴⁺ by Al³⁺ happens.

3.2. Density

Fig. 2 shows the density of $Ba_{4.2}Sm_{9.2}Ti_{18}O_{54}$ ceramics doped with none, MgO, Al_2O_3 and MnO₂ sintered at different temperatures for 3 h. The density of undoped BST ceramics increases with the increasing of the sintering temperature, and

Table 1 Lattice parameters of $Ba_{4.2}Sm_{9.2}Ti_{18}O_{54}$ ceramics doped with none, MgO, Al_2O_3 and MnO_2 .

Sample	a/Å	b/Å	c/Å	V/Å ³
	22.295	22.322	22.280	22.317
Undoped +MgO	12.139	12.148	12.138	12.163
+Al ₂ O ₃	3.828	3.830	3.826	3.832
$+MnO_2$	1036.10	1038.52	1034.62	1040.22

Download English Version:

https://daneshyari.com/en/article/1463583

Download Persian Version:

https://daneshyari.com/article/1463583

<u>Daneshyari.com</u>