

CERAMICS INTERNATIONAL

www.elsevier.com/locate/ceramint

Ceramics International 34 (2008) 953-956

# Characteristics of La<sub>2</sub>O<sub>3</sub> thin films deposited using metal organic chemical vapor deposition with different oxidant gas

Hyo June Kim, Jin Hyung Jun, Doo Jin Choi\*

Department of Ceramic Engineering, Yonset University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea

Available online 2 October 2007

#### Abstract

 $La_2O_3$  films were deposited using  $O_3$  and the structural and electrical properties were investigated and compared with those of  $La_2O_3$  films deposited using  $O_2$ . The deposition temperature of the  $La_2O_3$  films using  $O_3$  was slightly reduced compared to that of the  $La_2O_3$  films generated using  $O_2$ . After a post-annealing process at 600 and 900 °C, the crystallinity of the  $La_2O_3$  films using  $O_3$  were smaller than that using  $O_2$ . The leakage current density increased after annealing at 600 °C due to densification and then decreased after annealing at 900 °C due to interfacial layer growth. The effective dielectric constant of the  $La_2O_3$  films deposited using  $O_3$  decreased at 900 °C due to interfacial layer growth. The  $La_2O_3$  films deposited using  $O_3$  showed better structural and electrical properties in this study.

Keywords: MOCVD; Ozone; Post-annealing; La2O3

## 1. Introduction

During the scaling down of SiO<sub>2</sub> gate oxides in silicon-based semiconductor technology, many difficulties have been faced [1]. In particular, in the case of an equivalent oxide thickness (EOT) below 1.5 nm, SiO<sub>2</sub> cannot be used as a gate oxide since a reduction of the physical thickness causes problems such as gate leakage current, poor reliability, and boron penetration [2,3]. In order to solve these problems, the concept of a high dielectric constant material has been proposed. High dielectric constant materials have an advantage in that they enable an increase of the physical thickness to an extent that solves the problems of typical gate oxides [4]. High dielectric constant materials such as HfO<sub>2</sub> [5], ZrO<sub>2</sub> [6], La<sub>2</sub>O<sub>3</sub> [7], Al<sub>2</sub>O<sub>3</sub> [8], which have higher dielectric constants compared to SiO<sub>2</sub>, have been suggested. In order for these high dielectric constant materials to be an adequate substitute for SiO2, many requirements must be met, including interface stability with the silicon substrate, high carrier mobility, low trapped charge density, and low leakage current density. Although numerous studies on high dielectric constant materials have already been

In this study, the  $La_2O_3$  films were prepared by MOCVD using  $O_3$  as an oxidant gas and the growth behavior, structural and electrical properties of the films were investigated. These results were compared with those from a previous report on  $La_2O_3$  films deposited by MOCVD using  $O_2$  as an oxidant gas.

#### 2. Experimental procedure

 $La_2O_3$  films were deposited on  $(1\ 0\ 0)$  p-type Si wafers (MEMC-Korea, Korea) by the MOCVD system. A La(tmhd)<sub>3</sub> tetraglyme adduct [tris(2,2,6,6-tetramethyl-3,5-heptanedionato) lanthanum (III) tetraglyme adduct,  $La(C_{11}H_{19}O_2)_3\cdot CH_3(OCH_2\ CH_2)_4OCH_3$ , Strem Chemical Inc., USA] was used as a precursor for the La and  $N_2$  was used as a carrier gas for the La precursor.  $O_3$  at a concentration of 86.4 g/m³ was used as an oxidant gas.  $O_3$  was generated by an ozone generator [Ozonetech. Co., Lab 1, Korea]. Table 1 shows the details of deposition conditions. Prior to deposition, the wafers were cleaned with organic solvents. The wafers were then treated with 10% hydrofluoric (HF) solutions to remove any native oxide.

completed, additional research, with the aim of obtaining high quality films, must be done continuously. In several studies involving high dielectric constant materials, it was reported that the film properties can be improved by changing oxidant gas sources [9–11].

<sup>\*</sup> Corresponding author. Fax: +82 2 365 5882. E-mail address: drchoidj@yonsei.ac.kr (D.J. Choi).

Table 1
Detailed conditions for the La<sub>2</sub>O<sub>3</sub> films deposited using O<sub>3</sub>

| Deposition temperature (°C)                      | 335 |
|--------------------------------------------------|-----|
| Working pressure (Torr)                          | 5   |
| Temperature of La source (°C)                    | 200 |
| O <sub>2</sub> , O <sub>3</sub> flow rate (sccm) | 100 |
| La source carrier gas flow rate (sccm)           | 30  |

After deposition, in order to investigate the effects of postannealing on the  $La_2O_3$  films using  $O_3$ , the as-grown films were annealed at 600 and 900 °C for 90 s in an N<sub>2</sub> ambient by a rapid thermal process (RTP). The film thickness was measured by an ellipsometer (Gartner, L117,  $\lambda = 632.8 \text{ nm}$ ). The atomic concentration and crystallinity were measured by X-ray photoelectron spectroscopy (XPS, Physical Electronics PHI 5700/660 XPS spectrometer using monochromatized Al Kalpha radiation) and X-ray diffraction (XRD). To measure electrical properties of the La<sub>2</sub>O<sub>3</sub> films deposited using O<sub>3</sub>, metal-oxide-semiconductor (MOS) capacitors (Pt/La<sub>2</sub>O<sub>3</sub>/Si) were fabricated. The Pt electrode of the MOS capacitor was fabricated using magnetron sputtering and shadow masks. The capacitor area was  $9.25 \times 10^{-4}$  cm<sup>2</sup> for all samples. C-V and I-V characteristics were measured using an HP4280A 1 MHz C Meter/CV Plotter and an HP4145B semiconductor parameter analyzer, respectively.

#### 3. Results and discussion

Fig. 1 shows the growth rate of the  $La_2O_3$  films deposited using  $O_3$  at various deposition temperatures. Based on calculations from surface reactions controlled region of CVD kinetics at 300–350 °C by the Arrhenius equation, the activation energy was found to be 0.78 kcal/mol. This activation energy was lower than that of previous results using

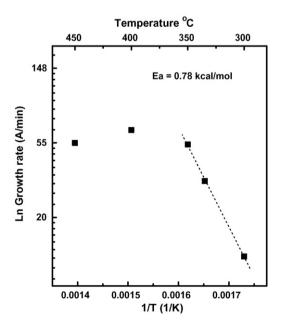



Fig. 1. Arrhenius plot of the growth rate of the  $La_2O_3$  films using  $O_3$  as a function of the various deposition temperatures.

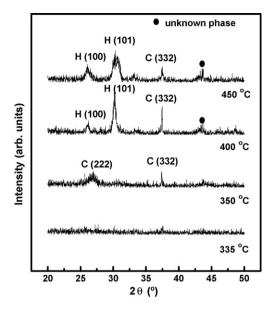



Fig. 2. Glancing angle XRD patterns of  $La_2O_3$  films with various deposition temperatures.

 $O_2$  as an oxidant gas [12] because the reactivity of  $O_3$  is higher than that of  $O_2$ . Hence, the growth rate of the  $La_2O_3$  films deposited by  $O_3$  was higher than that deposited using  $O_2$ . A  $La_2O_3$  film was not deposited at 300 °C in when  $O_2$  was used as an oxidant gas. However, when  $O_3$  used as an oxidant gas, there was a slight deposition of  $La_2O_3$  even at 250 °C. It was noted that the high reactivity of  $O_3$  as an oxidant gas accelerated film deposition at a relatively low temperature and enhanced the growth rate of the film above that of the film deposited using  $O_2$ .

Fig. 2 shows the X-ray diffraction patterns of the as-grown La<sub>2</sub>O<sub>3</sub> films at various deposition temperatures of 335–450 °C. In gate dielectric technology, an amorphous phase is more suitable than a crystalline one because grain boundaries of a crystalline phase can act as a leakage current path. Hence, it is important to determine the proper deposition temperature for an amorphous phase. In this study, an amorphous phase was observed at a deposition temperature of 335 °C. As the substrate temperature increased, the film showed a more crystalline structure. Accordingly, we selected a deposition temperature of 335 °C for generating an amorphous La<sub>2</sub>O<sub>3</sub> film. Above a deposition temperature of 350 °C, the La<sub>2</sub>O<sub>3</sub> films using O<sub>3</sub> exhibited crystalline planes, such as cubic (2 2 2) and (3 3 2), while the films using O2 showed an amorphous structure at that temperature. It seems that crystallization was enhanced during deposition in case of the film deposited using O<sub>3</sub>. The higher reactivity of O<sub>3</sub> causes early crystallization of the film prior to the crystallization temperature.

Fig. 3(a) shows XRD patterns of the as-grown  $La_2O_3$  films with a thickness of 42 nm and films annealed at 600 and 900 °C. In the previous results, in which  $La_2O_3$  films were deposited using  $O_2$ , it was found that as annealing temperature increased, cubic and hexagonal phases appeared [12]. However, in this study, only cubic phases were observed even after annealing at 900 °C. This meant that the degree of crystallization of the  $La_2O_3$  films using  $O_3$  during annealing process at 600 and

### Download English Version:

# https://daneshyari.com/en/article/1463866

Download Persian Version:

https://daneshyari.com/article/1463866

<u>Daneshyari.com</u>