Composites: Part A 89 (2016) 40-46

Contents lists available at ScienceDirect

Composites: Part A

journal homepage: www.elsevier.com/locate/compositesa

Graphene-enhanced microwave absorption properties of Fe₃O₄/SiO₂ nanorods

Xiaofang Liu^{a,*}, Yaxin Chen^a, Chengcheng Hao^a, Jinrui Ye^b, Ronghai Yu^a, Daqing Huang^c

^a School of Materials Science and Engineering, Beihang University, Beijing 100191, China
^b Association for Science and Technology of Beihang University, Beijing 100191, China
^c AVIC Beijing Institute of Aeronautical Materials, Beijing 100195, China

ARTICLE INFO

Article history: Available online 16 February 2016

Keywords: A. Graphene A. Hybrid B. Electrical properties B. Magnetic properties

ABSTRACT

 $Fe_3O_4/SiO_2/graphene$ composite composed of Fe_3O_4/SiO_2 core-shell nanorods and graphene nanosheets were synthesized by a facile wet chemical method. Structure and morphology studies reveal that the Fe_3O_4/SiO_2 nanorods with porous structure and large aspect ratio are densely wrapped by the graphene nanosheets. By changing the graphene content, the electromagnetic properties of the $Fe_3O_4/$ $SiO_2/graphene$ composite can be well tuned. When the weight ratio of Fe_3O_4/SiO_2 to graphene reaches an appropriate value, excellent microwave absorption performance is achieved due to the large electromagnetic losses and good impedance matching. The $Fe_3O_4/SiO_2/graphene$ composite with graphene content of 5 wt.% shows the minimum reflection loss of -27.1 dB at 12.2 GHz when the coating layer thickness is only 1.5 mm.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

High-performance microwave absorption materials which convert electromagnetic (EM) energy to thermal energy or other forms of energy have become a hot topic in solving serious EM pollution problems caused by wide applications of electromagnetic wave devices, such as wireless networks, communication equipments, and personal digital devices [1,2]. The ideal EM wave absorbing material is required to have strong EM wave absorption, wide absorption frequency range, low density, high thermal stability and antioxidation capability, which facilitate its practical applications in civil and military fields [3]. Inverse spinel type Fe_3O_4 is a conventional EM wave absorbing material because of its low cost, easy fabrication, and excellent magnetic properties which produce large magnetic loss in alternating electromagnetic field. However, it is difficult for individual Fe₃O₄ material to fulfil the requirements for high-performance EM wave absorbers in gigahertz frequency range due to the shortcomings of permeability reduction caused by Snoek's limit at high frequency, narrow absorption frequency range, high density and ease of oxidation [4]. To improve the absorbing properties of Fe₃O₄ in high frequency region, extensive studies have been made to develop Fe₃O₄ composite absorbers which combine magnetic loss and electric loss, such as Fe_3O_4/TiO_2 [3], $Fe_3O_4/$ ZnO [5], Fe₃O₄/carbon nanotubes [6], and Fe₃O₄/SnO₂ [7].

http://dx.doi.org/10.1016/j.compositesa.2016.02.006 1359-835X/© 2016 Elsevier Ltd. All rights reserved.

Among various electric loss type materials, carbonaceous materials are considered as promising candidates for achieving lightweight and high-efficiency characteristics [8–11]. Particularly, two-dimensional graphene sheets have attracted much attention owing to the superior electronic, mechanical and chemical properties [12,13]. Moreover, the large specific surface and layered structure endow graphene a potential nanoscale building block for new hybrid materials. Recent research shows that Fe₃O₄ nanoparticlefunctionalized graphene sheets have better EM wave absorption properties than individual Fe₃O₄ particles. For example, Sun et al. prepared Fe₃O₄ nanoparticle-graphene composite and obtained a minimum reflection loss (RL) of -15.38 dB with a layer thickness of 2.0 mm [14]. Xu et al. reported a hollow Fe₃O₄/graphene composite which exhibited a minimum RL of -24 dB at 12.9 GHz with a layer thickness of 2.0 mm [15]. Zong and co-workers loaded Fe₃O₄ nanoparticles on graphene by a co-precipitation route. Such composite displayed strong EM wave attention with minimum RL of -44.6 dB when the thickness was 3.9 mm [16]. In previous studies, however, most Fe₃O₄-graphene composite absorbers are based on Fe₃O₄ spheres in nanoscale or submicron-scale. It is known that one dimensional (1D) Fe₃O₄ nanostructures could overcome the Snoek's limit and have large magnetic loss in gigahertz frequency region due to the large shape anisotropy field. Nevertheless, 1D Fe₃O₄-graphene composite absorbers, which are expected to possess excellent microwave absorbing performance, are seldom reported. To the best of our knowledge, only in Ren's study, the Fe₃O₄ nanorods with the aspect ratio (length/diameter) of about

^{*} Corresponding author. Tel.: +86 10 8217101. *E-mail address:* liux05@buaa.edu.cn (X. Liu).

4 were perpendicularly grown on graphene sheets. Such threedimensional composite absorbers exhibited minimum RL of -31.9 dB as the thickness is 2.5 mm.

In the present work, we synthesized the Fe₃O₄ nanorods with much larger aspect ratio (15–22) and fabricated Fe₃O₄/SiO₂ coreshell nanorods-graphene composite absorber. The large aspect ratio of the Fe₃O₄ nanorods produces large shape anisotropy field and results in large permeability in high frequency range, which benefit the improvement of high-frequency absorbing properties. The formation of SiO₂ shell on Fe₃O₄ can effectively prevent the oxidation and improve the stability of Fe₃O₄ nanorods. Such composite absorbers combine the advantages of 1D Fe₃O₄/SiO₂ nanorods and graphene, making the best of the contributions from magnetic loss and electric loss. Meanwhile, we investigated the effects of graphene on tuning the EM properties by changing the graphene content. With an appropriate amount of graphene. the $Fe_3O_4/SiO_2/graphene$ composite achieves an enhanced dielectric properties and improved impedance matching, which lead to an excellent microwave absorption performance at very thin layer thickness.

2. Experimental section

2.1. Sample preparation

2.1.1. Synthesis of FeOOH/SiO₂ nanorods

The synthesis of FeOOH/SiO₂ nanorods was carried out as previously reported [17]. Briefly, 0.6 M of FeCl₃·6H₂O and 0.07 M of 37% HCl were added to a 500 mL Schott bottle and aged in an oven at 98 °C for 24 h. Subsequently, the obtained precipitates were collected, washed with water for several times, and then redispersed in 200 mL of water. 10 mL of polyacrylic acid (0.1 M) solution was added to the suspension for the surface modification of FeOOH nanorods. After overnight stirring, the FeOOH nanorods were collected and were redispersed in 180 mL of water, followed by addition of 6 mL of ammonia solution, 160 mL of ethanol, and a certain amount of tetraethyl orthosilicate (TEOS). After stirring for 1 h, the FeOOH/SiO₂ nanorods were collected and washed with water.

2.1.2. Preparation of FeOOH/SiO₂/graphene composite

Graphite oxide (GO) was synthesized by a modified Hummers method [18]. To obtain FeOOH/SiO₂/graphene composite, a certain amount of FeOOH/SiO₂ nanorods was added to GO suspension with the mass percentage of GO of 5 and 10 wt.%. Corresponding FeOOH/SiO₂/GO composites were marked as FSG-1 and FSG-2. After being sonicated for 0.5 h, the black precipitates were collected, washed, and finally dried.

2.1.3. Conversion from FeOOH/SiO₂/GO to Fe₃O₄/SiO₂/graphene composite

The Fe₃O₄/SiO₂/graphene composite were produced by annealing the FeOOH/SiO₂/GO composite at 400 °C for 1 h under a continuous H_2/N_2 gas flow.

2.2. Characterization

The phase composition and crystal structure of the samples were measured by X-ray diffractometer (XRD, D/MAX-1200, Rigaku Denki Co., Ltd., Japan) with Cu Kα irradiation. Transmission electron microscopy (TEM, JEOL-2100F) and field emission scanning electron microscopy (JSM-7500F) were used to observe the morphology and microstructure of the samples. The Raman spectra of the samples were obtained by using an in Via Laser Raman spectrometer (LabRAm HR Evolution). X-ray photoelectron spectroscopy (XPS) measurement was performed on a spectrometer

with Mg K α radiation (ESCALAB 250, Thermofisher Co.). Roomtemperature magnetic properties of the samples were measured by a Lakeshore vibrating sample magnetometer (VSM).

To test the EM parameters of the Fe_3O_4/SiO_2 nanorods and $Fe_3O_4/SiO_2/graphene$ composites, the powders were mixed with paraffin and pressed into toroidal shape with outer diameter of 7.00 mm and inner diameter of 3.04 mm by pressing. The complex permittivity and permeability values were measured in the 2–18 GHz frequency range by an Agilent N5230C network analyzer.

3. Results and discussion

Fig. 1 shows the XRD patterns of the Fe₃O₄/SiO₂ core-shell nanorods and Fe₃O₄/SiO₂/graphene composites with different amount of graphene. Clearly, the introduction of graphene did not change the structure and composition of the Fe₃O₄/SiO₂ nanorods. All the XRD curves of the samples display characteristic diffraction peaks of Fe₃O₄ which correspond to the (220), (311), (222), (400), (422), (511), (440), and (533) planes according to JCPDS No. 87-0245. Except for the peaks of Fe₃O₄, no other diffraction peaks from SiO₂, GO or graphene can be found. It implies that the SiO₂ is amorphous structure and the GO is effectively reduced into graphene without self-restacking of the graphene sheets [19]. Raman spectroscopy was used to further investigate the structure of the Fe₃O₄/SiO₂/graphene composites. Fig. 2 shows the representative Raman spectra of GO and Fe₃O₄/SiO₂/graphene composite (FSG-2). The GO spectrum exhibits two peaks at 1348 and 1588 cm⁻¹, which are assigned to the D-band and G-band, respectively [20]. The D band is a first-order zone boundary phonon mode associated with defects, while the G band is a radial C-C stretching mode of sp² bonded carbon [21]. The intensity ratio of D band to G band $(I_{\rm D}/I_{\rm G})$ is commonly used to reflect the degree of the defects in the graphene or the edges. Compared with GO, the I_D/I_G value of the Fe₃O₄/SiO₂/graphene composite shows a slight increase, and meanwhile the G band of the composite becomes weaker and broader. These phenomena were generally observed in many graphene-nanoparticle composites, and were regarded as a higher degree of defects in the graphene and a decrease in the average size of sp² carbon domains, which derive from the reduction of GO as well as the interaction between nanoparticles and graphene sheets [16.22.23].

XPS measurements were carried out to determine the chemical composition of the $Fe_3O_4/SiO_2/graphene$ composite (FSG-1). The Fe 2p XPS spectrum in Fig. 3(a) shows two peaks at 710.7 and

Fig. 1. XRD patterns of Fe₃O₄/SiO₂ core-shell nanorods and Fe₃O₄/SiO₂/graphene composites with different amount of graphene (FSG-1 and FSG-2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/1465768

Download Persian Version:

https://daneshyari.com/article/1465768

Daneshyari.com