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Resin flow modeling for liquid composite molding processes is generally based on assumptions of rigid
porous media. This is invalid for process variations utilizing compliant mold. Yet the models built on rigid
porous media assumption are used with some success in analyzing such infusions.

Previous work showed that for certain porous media the one dimensional flow patterns are similar to
those in rigid porous media and the deformation effects can be included in a scaling factor for permeabil-
ity.

This note analyzes the one-dimensional linear and radial flows in porous media with generic
constitutive relations between resin pressure, thickness and permeability. It shows that as long as the
deformation remains moderate, the effect of deforming porous medium may be incorporated in a single
scaling factor for material permeability. This scaling factor depends on material and applied injection
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pressure, but does not change with time, flow-front position or type of infusion (linear or radial).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Resin flow modeling for liquid composite molding processes is
usually based on assumptions of rigid porous media. The state of
fiber bed is not supposed to change with resin pressure. This
assumption provides a simple linear description [2,3] and allows
for robust and fast solution methods [4]. These methods in turn
allow one to optimize process design and even introduce on line
control [5] that would be impractical with slower, more complex
models.

Unfortunately, this assumption of rigid porous media strictly
holds for processes that use rigid stationary mold such as Resin
Transfer Molding (RTM). The level of pre-stressing applied to the
fiber bed in this process, necessary to prevent fiber wash-out,
makes deformation changes due to resin pressure negligible. Once
a compliant mold or vacuum bag is used for processes such as in
Vacuum Assisted RTM (VARTM), the developing resin pressure
field leads to thickness changes of porous media rendering the
rigid porous media assumption invalid as fiber content changes
[6]. But while there have been attempts to address the compliance
of the fiber bed in the numerical flow model [7-10], none of these
have come close to the versatility and performance of RTM filling
simulations.

As a result, process designers have been using the RTM model
with a great deal of success - to simulate the flow in VARTM
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infusions. The practical justification to this approach comes from
several sources:

1. Experimental permeability measurements in VARTM settings
correlate well with constant permeability and thickness flow
patterns, although the permeability value differs from the one
measured in RTM settings

2. The approach has been used for some time without challenge.
When compared, the predicted flow patterns and fill times rea-
sonably match experimental values if the permeability was
properly established, for example measured in a VARTM exper-
imental setting [11-14].

3. Lopatnikov et al. showed analytically that flow patterns in one-
dimensional flow of linearly elastic material to behave as rigid
porous media [1].

Lopatnikov’s work provides the solution for linear one-
dimensional flow, including pressure distribution, but it is limited
by the Kozeny-Carman permeability relation and, somewhat
impractical applied deformation model (linearly elastic). Extension
is called for to verify that this behavior extends to other deforma-
tion models.

However, to establish the apparent permeability for one-
dimensional experiment - linear or radial - one does not need to
have a complete solution. Assuming that the flow is single-scaled
and no unsaturated regions remain behind the flow-front, we
know that the flow through any location remains constant (first
integral). Utilizing this fact, we can solve for advancing flow under
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Fig. 1. 1-D linear flow experiment.

general constitutive relations that describe the thickness and per-
meability change. Although one will not be able to recover the
complete pressure field from this solution, but will be able to find
the equivalent permeability that one can use in the RTM model to
predict the flow patterns. The equivalent permeability will be
determined from the relation between flow-front position and
time.

2. Assumptions

We will assume that the process is adequately described by
Darcy’s law and that quasi-steady solution may be applied.
Multi-scale effects (delayed micro-pore saturation) are negligible.
The former is generally true, the latter may or may not be true,
but its accuracy can be generally verified for individual cases. For
radial infusion model we will assume that the material is isotropic.
We assume no significant flow in the through-the-thickness direc-
tion, meaning that the solution is not quite applicable for scenarios
in which flow enhancement layer is used if flow-front lags signifi-
cantly on the tool side. We will assume that the infusion pressure
pin Temains constant throughout the process and so does the fluid
viscosity #. In almost all cases this is true. As far as preform com-
paction description goes, we will assume that both the material
thickness h, porosity ¢ and in-plane permeability K can be
described as dependent on resin pressure p:

K =K(p)
¢ = o(p) (1)
h = h(p)

This rules out viscous component of compaction behavior but it
would still allow plastic behavior and even hysteresis behavior due
to “debulking” as long as the loading (fluid pressure increase) is
monotonous, increasing from zero to whatever final value it attains
(usually pjp).

Practically, the application of “debulking”, repetitive loading
and unloading cycles by vacuum cycling, would mean that the rela-
tions (1) will change with each debulking cycle. Thus the depen-
dency (1) will be different after successive loading cycles. This
would make it necessary to characterize material in each such case
of interest under monotonously increasing fluid pressure.

3. Flow advancement analysis for linear flow

Geometry of 1-D resin linear flow experiment is simple (Fig. 1).
Resin is infused from one end of a rectangle under pressure p;;, and
its progress L(t) is monitored in time.

Solving for pressure field under usual [2] quasi-steady assump-
tions, the continuity equation for 1D linear flow has a very simple
form

4 ho)- (o =0 @)

We assumed dp/ot and consequently the accumulation part
0h/ot to be negligible. In our case the justification of this assump-
tion has some limits as scaling analysis shows that the ratio of

accumulation vs. convective terms will scale with 2 - Ah/hy where
Ah is the thickness change and hy is the original thickness. Thus (2)
can be considered accurate for small thickness changes and bear-
able for usual values in the analyzed process (10%). It would be
inadmissible for compliant materials.

The volume averaged velocity (v) can be evaluated from resin
pressure using Darcy’s law:

K(p) dp

(v)= Ty dx 3)
Here 7, is the resin viscosity. Integrating Eq. (2) and combining it
with Eq. (3) will result in

_K()-h(p) dp
=T & @

The value of constant C (flow per unit width) can be obtained by
separating the equation and integrating the position x from 0 to L
(flow-front position) and pressure p from p;, to O:

0
C=py | K@) hp)dp 5)
Pin
Now that C is known, we can write the (quasi-steady) equation for
flow front advancement. The pressure at flow-front is 0 and conse-
quently permeability and porosity will be evaluated for this
pressure

dL  K(0) dp
dt— n-$(0)dx

(6)

x=L
And we can evaluate the derivative on right side of (6) using
Egs. (4) and (5) to obtain

dL _ K©) g 1 P
& =90 KO RO Ly ), <0)hp)dp 7

Or, after algebraic simplification it can be recast as

1 [t"K(p)-h(p)dp
207 hO)py Pl ®)

Note that as long as the inlet pressure does not change, the
value of integral depends neither on time nor on flow-front posi-
tion and is constant. This result can be compared with the well-
known similar equation for rigid porous media. Let us write it for
fully compacted state (p =0):

L-dL=

1
Ldl = 5 K(0) - pudt 9)

Quite obviously, the deformable porous media flow advance
exhibits the same behavior, i.e., flow with constant effective per-
meability K which by comparing Eqs. (8) and (9) is

"K(p) - h(p)dp
h(0) - pi,

From this equation, for any particular material with known con-
stitutive properties the value of K5 can be evaluated.

Koy = (10)

4. Flow advancement for radial flow

Again, the geometry of radial flow experiment - assuming
isotropic material - is familiar (Fig. 2).

In this case we will track the radius of flow-front R(t). The
continuity equation in radial coordinates is

dr-np) - (o) =0 a1

Darcy’s law only changes the independent coordinate to r
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