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a b s t r a c t

In this paper, an original and effective model of behaviour for short-fibre reinforced composites is pre-
sented. In particular, complex fibre distributions of orientation can be dealt with in a very easy way, with-
out orientation averaging or additional homogenisation steps. The matrix material has elastoplastic
damage behaviour with non-isochoric plastic flow. Ductile damage can be fully anisotropic depending
on the reinforcement characteristics. The model is validated for the case of a polypropylene reinforced
with short flax fibres. In addition, simulations are performed to investigate the influence of key param-
eters like fibre length and interfacial shear strength, as well as the impact of progressive debonding at the
fibre tips.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Short fibre reinforced composites (SFRC) are now widely em-
ployed for the production of load bearing pieces in many industrial
sectors. It is therefore essential to define efficient models of behav-
iour in order to predict the mechanical response of SFRC. The fibre
behaviour is generally assumed elastic, since the composite is quite
likely to fail before the fibre stress reaches the yield stress. On the
contrary, the matrix material can have complex elastoplastic
behaviour and possibly compressible plastic flow (especially for
polymers), viscous effects (viscoelasticity and/or viscoplasticity),
ductile damage, etc. The modelling of the fibre/matrix interface is
undoubtedly a key point when dealing with SFRC. Indeed, the
interface properties govern the load transmission from the matrix
to the fibres and fibre/matrix debonding is one of major damage
phenomena of SFRC, together with matrix cracking and fibre break-
ing. Another challenge is to take complex fibre orientations into ac-
count [1].

Among approaches going beyond the framework of elasticity,
the most appealing are unit-cell (UC) based methods and homoge-
nisation procedures. A UC is made of a single fibre embedded in the
matrix material, with volume proportions equal to those of the
composite. A finite element (FE) model is built using two different
kinds of material properties for the fibre and matrix media. FE sim-
ulations using different kinds of loading must be performed to
characterise the behaviour of the UC. It is worth noting that any

modification of the matrix and/or fibre behaviour therefore re-
quires re-characterising the UC. The composite behaviour is finally
computed by direction averaging over all existing fibre orienta-
tions. UC based methods are generally used to model SFRC with
randomly oriented fibres [2,3]. Homogenisation procedures are
originally based on inclusion-type problems; important improve-
ments have been done by considering non-aligned fibres with
two-step homogenisation procedures [4]. In a principle very close
to UC based techniques, the first step consists in the homogenisa-
tion of a two-phase ‘‘pseudo-grain’’ with aligned fibres followed by
the homogenisation of all pseudo-grains according to the fibre ori-
entation properties. More recently, Kammoun et al. have taken
damage phenomena into account in the two-step homogenisation
procedure [5]. However, they adopt a purely deterministic ap-
proach that does not integrate the physics of damage mechanisms
(evolution of damage is based on probability law of pseudo-grain
failure). Brighenti et al. have developed a model that takes several
damage mechanisms (matrix cracking, fibre orientation effect and
debonding, etc.) into account for brittle matrix material [6,7]. To
the authors’ knowledge, a coupled elastoplastic-damage model of
the matrix behaviour has never been considered for SFRC in asso-
ciation with other composite damage mechanisms.

The model presented in this paper aims to be an original and
effective alternative to UC based techniques and homogenisation
procedures to predict the behaviour of SFRC with complex fibres
orientations. The matrix material has elastoplastic behaviour with
non-isochoric plastic flow. Matrix ductile damage is also modelled
in the framework of Continuum Damage Mechanics. Damage can
be fully anisotropic depending on the reinforcement characteris-
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tics. The SFRC is seen as the assembly of a matrix medium and as
many fibre media as there are different fibre orientations, in which
all media are linked by an additive decomposition of the state po-
tential. Complex orientations can therefore be dealt with in a very
easy way, with no need to perform orientation averaging or second
homogenisation step. Different types of material behaviour (hard-
ening law, compressibility, e.g.) and/or material parameters can be
easily considered (no re-characterisation of the UC). In addition, FE
simulations of complex specimens can be greatly simplified, with
no need to define periodic boundary conditions.

The following section presents the constitutive equation of the
SFRC behaviour model. It is validated in Section 3 for the case of
tensile tests of a polypropylene reinforced with short flax fibres.
The influence of key parameters like fibre length and interfacial
shear strength as well as the impact of a progressive debonding
at the fibre tips are discussed in Section 4.

2. Behaviour of elastoplastic damage matrix reinforced with
misaligned short fibre

The composite material is seen as the assembly of a damageable
elastoplastic matrix material (volume fraction vM) and of N one-
dimensional linear elastic fibre media (Young modulus EF, total
volume fraction vF = 1 � vM). Each fibre medium is characterised
by a unit vector of orientation,~aa, that gives the fibre axis direction
in the global system of coordinates, and by a volume fraction, va

F .
The behaviour of each medium is solved successively before the

composite behaviour is computed thanks to an additive decompo-
sition of the state potential (cf Section 2.3).

2.1. Elastoplastic damage behaviour of the matrix material

The elastoplastic behaviour of the matrix material is described
using the Drucker–Prager criterion for plasticity in the framework
of non-associative plasticity. This way, different material response
in tension and in compression, as well as non-isochoric plastic flow
can be dealt with [8]. An isotropic ductile damage, which evolves
with the plastic strain, is assumed for the neat matrix material.
In the composite, the matrix damage can become fully anisotropic
depending on the characteristics of the reinforcement. A 4th-order
damage tensor, D, is therefore introduced to link the actual (rM)
and effective ð~rMÞ Cauchy stress tensors of the matrix material,
with rM = D ~rM; i.e. rMij ¼ Dijkl ~rM kl "ij (summation over k and l).
It is assumed that each fibre medium governs the damage charac-
teristics over the volume va

F V of the matrix material, V being whole
volume of the composite material. Fibres’ influence on matrix dam-
age is modelled by intermediate damage tensors Da, expressed in
fibre medium coordinates system. The fibres are assumed to pre-
vent the matrix damage in their direction of orientation (i.e.
Da

1111 = 1). Moreover, the presence of the fibres can result in differ-
ent mechanisms of damage in tension and shear [9]. Two indepen-
dent scalar variables are therefore introduced: Ds acts on the
deviatoric stress components and Dn acts on the hydrostatic stress.
Based on these hypotheses, intermediate damage tensors, Da, are
expressed by Da

ijkl ¼ dikdjlb1� Dndijð1� di1Þ � Dsð1� dijÞc [10].
Finally, the global damage tensor is expressed by assembling the

Nomenclature

List of symbols
Aa fibre matrix of orientation
~aa fibre vector of orientation
a parameter of Ramberg–Osgood law (matrix)
D 4th-order damage tensor (matrix)
C � Ca

F right Cauchy–Green tensors (composite material and fi-
bre medium)

EF–EM Young moduli (fibre and matrix)
F � Fa

F tensors of deformation gradient (composite and fibre
medium)

g law of evolution of fibre/matrix debonding
H–h hardening law and variableeJ2 matrix effective von Mises equivalent stress
La – Lc fibre length – critical length for fibre breakage
N number of fibre media
n parameter of Ramberg–Osgood law (matrix)
p cumulative plastic strain
pD damage threshold
ra fibre radiuseSM deviatoric part of matrix effective Cauchy stress tensor
Sn – Ss damage parameters
Ta transition matrix from fibre medium coordinate system

to the global one
V volume of the composite material
vM matrix volume fraction
v 0M matrix volume fraction where damage remains isotro-

pic
vF � va

F total fibre volume fraction – fibre medium a volume
fraction

Yn – Ys strain energy release rates
d Kronecker’s symbol

c parameter field governing pressure sensitivity of matrix
plastic potential of dissipation

e – ee – ep total, elastic and plastic strain tensors (composite and
matrix materials)

ea0
F � Ea0

F � ea
F one-dimensional Hencky and Green strains of fibre

medium a – 3D Hencky strain tensor of fibre medium a
êa0

F one-dimensional Hencky strain of fibre medium a in
case of partial debonding

e1–e2 material parameters governing the evolution of fibre/
matrix debonding

fa non-null eigenvalue of tensor Ca
F

g Drucker–Prager parameter governing pressure sensitiv-
ity of plasticity criterion (matrix)

h elevation angle of fibre orientation
K plastic multiplier
mM, mp matrix Poisson ratio and plastic Poisson ratio
n parameter governing the asymmetry of the yield surface
q, qM, qa

F densities of the composite, matrix material and fibre
medium a

rM – ~rM � ~rH � ~ry � ~req matrix actual and effective Cauchy
stress tensors, hydrostatic and yield stress and effective
Drucker–Prager equivalent stress

ra0
F one-dimensional axial stress of fibre medium a

r0 parameter of Ramberg–Osgood law
sa interfacial shear strength (IFSS)
U, UM, Ua

F Helmhotlz free energies of the composite, matrix and
fibre medium

u azimuthal angle of fibre orientation
wP – wD plastic and damage parts of the dissipation potential

(matrix).
Exponent a refers to fibre medium a
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