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a b s t r a c t

The micromechanical damage and strength of discontinuous fiber-reinforced polymer matrix composites
was simulated by the Spring Element Model (SEM), and SEM was compared with Periodic Unit-Cell (PUC)
simulation to clarify the potential of SEM. Tensile failure simulations indicate that SEM can be effectively
used to predict the strength of long discontinuous fiber reinforced composites. The transition between
matrix cracking mode and fiber breaking mode is also discussed to clarify the fiber length at which
SEM can be used to predict strength. In addition, the strengths predicted with SEM are compared with
the results of experiments on long discontinuous fiber-reinforced thermoplastic composites.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Discontinuous fiber-reinforced polymer matrix composites
have been utilized for automobile components more often than
continuous fiber-reinforced polymer matrix composites because
of manufacturing costs. However, discontinuous fiber-reinforced
polymer matrix composites are weaker than continuous fiber-rein-
forced polymer matrix composites [1]. To improve the strength of
discontinuous fiber-reinforced polymer matrix composites, the fi-
bers must be as long as possible. Therefore, long discontinuous fi-
ber-reinforced composites have recently been developed for
automobile applications [2]. Strength predictions are required to
design structures using long discontinuous fiber-reinforced poly-
mer matrix composites.

The failure mode of discontinuous fiber-reinforced polymer ma-
trix composites differs from that of continuous fiber-reinforced
polymer matrix composites. Okabe and Takeda [3] demonstrated
that failure of continuous fiber-reinforced polymer (Epoxy) matrix
composites is dominated by fiber breaks. In contrast, Sato et al. [4]
demonstrated that failure of short discontinuous fiber-reinforced
polymer matrix composites is caused by crack propagation
through the matrix. This failure mode can be simulated by Periodic
Unit-Cell (PUC) simulation [5]. This model verified the relationship

between fiber length and failure mode. In these analyses, matrix
failures are modeled based on continuum damage mechanics,
and fiber failures are modeled based on Weibull statistics. This
analysis can comprehensively simulate damage growth, including
failure mode transition, as the fiber length varies.

However, the PUC approach has limitations including computa-
tional cost, size scale, and dimensionality. The number of fibers in
the PUC model is limited due to its high computational costs.
Therefore, the simulated model was much smaller than the real
specimen. No studies have simulated a large, complicated model
of discontinuous fiber-reinforced polymer matrix composite up
to failure. It is thus unclear whether PUC predicts strength well if
the size effect is appropriately considered. In addition, PUC em-
ploys a 2D finite element model. Curtin [6] demonstrated that 2D
models are quantitatively less accurate than 3D models when ana-
lyzing the strength of continuous fiber-reinforced polymer matrix
composites.

Shear-lag model (SLM) is often used and has much lower com-
putational costs than PUC. Young et al. [7] measured the strain dis-
tribution along a fiber during a fiber fragmentation test using
Raman spectroscopy and found that SLM reproduced a strain dis-
tribution similar to that of the experiment unless fragmentation
reached saturation. Many studies have modified conventional
SLM [8–11]. For example, Ochiai et al. [8] took into account the
normal axial stress of the matrix. In particular, several 3D SLMs
were proposed after the 1990s to predict strength specifically for
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continuous fiber-reinforced polymer matrix composites [9]. Oka-
be et al. [10,11] proposed the Spring Element Model (SEM) to
simulate failure of UD composites. This approach enabled utiliza-
tion of the linear matrix solver to describe nonlinear strain fields
around a fiber break and damage evolution in composites. There-
fore, SEM can perform simulations more efficiently than SLM. By
inserting an initial fiber break, which can be regarded as a fiber
edge, SEM can perform failure analysis of a discontinuous fiber-
reinforced polymer matrix composite, although it cannot deal
with matrix cracks.

Ochiai and Hojo [12] applied SLM to discontinuous fiber-
reinforced composites. However, their work focused on the stress
distribution of fibers and was performed with a 2D model. We have
never seen a 3D model that simulates tensile failure of discontinu-
ous fiber-reinforced composites.

This study utilizes SEM for discontinuous fiber-reinforced com-
posites and compares SEM with PUC in order to clarify the poten-
tial of SEM. We demonstrate that 3D-SEM is the most effective
method for predicting the strength of long discontinuous fiber
composites. Finally, for long discontinuous fiber-reinforced ther-
moplastic (polypropylene) composites, we compared predictions
using 2D- and 3D-SEM with the experiment result of Hashimoto
et al. [2].

2. Analytical procedure

2.1. Spring Element Model (SEM)

Okabe et al. [10] introduced an effective scheme to address
plasticity around a fiber break. A Monte-Carlo simulation was per-
formed using their Spring Element Model (SEM). The composites
consisted of longitudinal and transverse springs (Fig. 1). Fig. 1a
depicts the 2D model, and Fig. 1b depicts the 3D model. The calcu-
lation procedure is presented in Okabe et al. [10]. A brief introduc-
tion is provided here. In this model, longitudinal springs behave as
fibers that carry only the tensile load, and transverse springs work
as a matrix that carries only the shear load. The stiffnesses of lon-
gitudinal spring element Ke

L and transverse spring element Ke
T are

calculated as
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where L is the longitudinal direction, T is the transverse direction, E
is Young’s modulus of fibers, G is the shear modulus of matrices, R is
the radius of fibers, l is the length of longitudinal springs, and d is
the length of transverse springs. It should be noted that 2D-SEM
requires changing the stiffness of the transverse spring to
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In general, the stress profile of fibers varies due to plastic defor-
mation and damage such as debonding and cracking of the matrix
[13]. Since the matrix is modeled indirectly, implementing deb-
onding and matrix cracking would be difficult. Therefore, for sim-
plicity, this model considers only the effect of plastic deformation
of the matrix. The axial stress in the broken fiber when plastic
deformation occurs in the matrix around the fiber breaking point
or the fiber edge is expressed as a function of distance Ds from
those positions as follows:

rs ¼ 2ssDs=R; ð6Þ

where ss is the interfacial shear stress and is assumed to be con-
stant. Since ss is constant, the matrix behaves as an elasto-perfectly
plastic body.

Thus, the equation of equilibrium is written as:
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Here, Nf is the number of fiber elements, NT is the number of matrix
elements, Nb is the number of broken fiber elements, and Np is the
number of fiber elements in the plastic deformation regions. The
length of the plastic region (Ds) and the fiber stress in the region
are preliminarily calculated using Eq. (6). This means that a non-lin-
ear problem is converted into a linear one; thus, it does not require
iterative or incremental calculations.

The present numerical analysis addresses fiber failure as fol-
lows. The fiber failure criterion is assumed to be expressed as Wei-
bull statistics [5]. The failure probability of fibers of length D
subjected to stress r is expressed as

Pf ðrÞ ¼ 1� exp � D
L0

� �
r
r0

� �q� �
; ð8Þ

where q is the Weibull modulus and r0 is a representative strength
for the fiber length L0. The strength of the ith fiber segment is deter-
mined by choosing a random number Ri ranging from 0 to 1 and
solving the equation Ri = Pf(ri). When the fiber stress at the ith fiber
segment reaches critical stress ri, a longitudinal element is removed
from the model.

2.2. Periodic Unit-Cell (PUC) simulation

This section describes Periodic Unit-Cell (PUC) modeling. Be-
cause the scale of the material and the details of the fiber in fi-
ber-reinforced plastics differ, it is difficult to analyze an entire
model containing all fibers, due to computer limitations. We there-
fore use a unit-cell model that represents a characteristic cross sec-
tion of fiber-reinforced plastics. By arranging the unit-cell models
periodically, we can analyze fiber-reinforced plastics that contain
many fibers.

Fig. 2 depicts the unit-cell modeling employed in the present
study. This unit cell is assumed to deform under plane strain con-
ditions. The fiber radius �rf in this 2D model should be half the ac-
tual radius in order to keep the stress recovery from fiber edges
consistent with that in 3D. The fiber is assumed to be an isotropic
elastic body and is modeled using nine-node square elements. The
matrix is assumed to be an isotropic elastic–viscoplastic body
intended for thermoplastic resin and is modeled using six-node

(a) SEM (2D) (b) SEM (3D)
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Fig. 1. Simulation models for (a) 2D-SEM, (b) 3D-SEM. In (a and b), the thick (thin)
lines represent fiber (matrix) elements. The load is applied in the fiber axial
direction.
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