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a b s t r a c t

In this paper the optimal shapes and fiber architectures of non-geodesics-based domes for pressure ves-
sels are determined upon the condition of equal shell strains. Based on the continuum theory and the
non-geodesic law, the system of differential equations governing the optimal meridian profiles is derived.
A specific function is chosen to describe the slippage coefficient distribution for the desired non-geodesic
path, in order to ensure C1 continuity of the roving paths when passing the dome–cylinder conjunction.
Next, the meridian profiles are determined for various material anisotropies; the related winding angle
developments of non-geodesic trajectories are also presented. The performance factors of non-geode-
sics-based optimal domes are obtained using various slippage coefficients and polar opening radii. The
results show that the structural efficiency of the dome improves with increasing slippage coefficient. It
is concluded that the non-geodesics-based dome designed using the present method gains better perfor-
mance than the one relying on geodesics.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Filament–wound composite pressure vessels have gained wide-
spread application in the field of aerospace, transportation, chem-
ical and underwater engineering. The quality of composite
pressure vessels is usually expressed in terms of the performance
factor, which is defined as pressure times volume divided by
weight (PV/W). From this formulation it becomes evident that
accurate estimations of the burst pressure and the resulting vessel
weight are of vital importance. For the calculations of the required
properties one can distinguish two approaches: the netting theory
and the continuum theory. In both approaches, the basic idea is to
maximally utilize the available strength. During pressurization, the
structure is under uniform through-thickness strain and conse-
quently no bending or discontinuity stresses are here assumed.
The netting theory provides results according to analytical or
graphical approaches [1–3]; however, it has a major defect in that
design calculations are solely based on fiber strength and the ma-
trix effect is not considered. The mechanical and structural perfor-
mance is predicted by neglecting the contribution of the resin
system. In addition, the continuum theory is more accurate and
shows the ability to cover the complete range from fully orthotro-
pic to entirely isotropic materials. Considering the current avail-
ability of computational resources and the accessibility of the
numerical operations that have to be undertaken, the continuum

theory is actually preferred, unless the designer seeks for a preli-
minary dimensioning procedure. One should note that the netting
approach is a special case of the continuum theory.

The geometrical determination of the dome is the major part of
designing pressure vessels. Various methods have been presented
for determining optimal domes, based on the continuum theory.
De Jong [4] compared the shapes of optimal profiles determined
by the netting and the continuum theory and indicated that the
geometry and performance of optimal domes are dependent on
the elastic properties of the materials used. Hojjati et al. [5] evalu-
ated the effect of mechanical properties of composites on the dome
profiles and proved that the matrix properties have a major role in
the dome design. Vasiliev et al. [6,7] derived the optimality condi-
tions for a pressure vessel based on the classical lamination theory
and outlined the shapes of optimal dome profiles corresponding to
various anisotropic characteristics. Liang et al. [8] presented the
optimal design of dome contours by maximizing the shape factor
and evaluated the effect of the dome depth on the structural per-
formance. Zu et al. [9] developed an optimal design method for
the class of articulated pressure vessels comprising various dome
cells that are axially stacked on each other. Fukunaga and Uemura
[10] determined optimal meridian shapes using several failure cri-
teria and presented an analytic approach for the optimal design of
dome structures. Tackett et al. [11] conducted a combined analyt-
ical and experimental effort to characterize dome reinforcement
requirements for intermediate modulus carbon/epoxy pressure
vessels and evaluated the influence of shallow dome profiles on
their performance. De Vita et al. [12] outlined the process simula-
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tion in filament winding of composite structures. Blachut [13,14]
investigated the optimal meridian shape and thickness distribu-
tions in a filament wound dome closure, and discussed the relevant
details of manufacture, testing and numerical analysis of the tori-
spherical heads.

Although the continuum-based dome design is sufficiently cov-
ered in the literature, there are some deficiencies. The majority of
previous research has merely considered the dome design based
on geodesic trajectories, and overlooked the application of non-geo-
desics to the optimal design of meridian profiles and their related
roving paths. Geodesics represent the shortest paths connecting
two arbitrary points on a continuous surface, and they show great
stability on a curved surface and calculability with the Clariaut
equation [15]. However, as geodesic paths are entirely determined
by the underlying meridian profile and initial winding angle, their
geometry, combined with the requirement for tangential placement
of the rovings at the polar areas, certainly limits the design opportu-
nities of domes [16,17]. A typical example of this restriction is the
limit for improving the structural performance of domes. The possi-
bility appears now for applying friction-based non-geodesics to the
design of roving trajectories for pressure vessels.

An optimal dome design relies on the most efficient distribution
of laminate thickness and stress, in order to maximize the struc-
tural performance. As the strength-dominated and manufactur-
ing-dominated thickness distributions do generally not match,
the laminate strength cannot be maximally utilized. A well-known
solution for this problem comprises geodesic-isotensoid designs,
based on the netting analysis. However, geodesics do generally
not result in optimal solutions for vessel design problems whereby
the matrix strength has to be taken into account [7,9,18]. It is thus
desirable to exploit non-geodesics to enlarge the design space for
obtaining the optimal meridian shapes and related roving trajecto-
ries, so that the minimum required thickness distributions as
determined by strength analysis can maximally coincide to the
manufactured thickness distributions as determined by the wind-
ing process. In Section 2, we present the differential equations
for determining non-geodesics on the surface of a dome. Then,
the optimality condition of equal shell strains for a pressure vessel
is derived (Section 3), based on the minimum strain energy crite-
rion, in order to maximize the structural stiffness and load bearing
capacity. In Section 4 the non-geodesics-based optimal meridian
profiles are determined with the aid of the equal-strains condition,
and the influence of the orthotropy on geometrical issues, such as
the resulting meridian shape and the tangentiality of the rovings at
the polar opening, is evaluated. The method is then demonstrated
by three typical composite materials, reflecting on the most gen-
eral design cases of domes (Section 5). To assess the effect of
non-geodesic paths on the structural performance of the dome,
we calculate and compare the performance factors of non-geode-
sics-based optimal domes for various slippage coefficients and po-
lar opening radii. The shell thicknesses are determined by the
combination of a strength criterion and the geometric (winding)
condition. Lastly, the distributions of laminate stresses are ob-
tained in order to illustrate that non-geodesics-based optimal do-
mes are relatively thinner than the geodesics-based ones, mainly
triggered by the efficient utilization of the laminate strength.

2. Non-geodesic trajectories

The vector representation of a dome structure in polar coordi-
nates is:

Sðh; zÞ ¼ frðzÞ cos h; rðzÞ sin h; zg ð1Þ

where r, z denote the radial and the axial distances, and h stands for
the angular coordinate in the parallel direction, as shown in Fig. 1.

The slippage coefficient k represents the slippage tendency of
the roving bundles that are placed on the supporting surface, and
is defined as the ratio of the geodesic curvature, kg, to the normal
curvature, kn [19]:

k ¼ kg=kn ð2Þ

The first fundamental form of S(h, z) is [15]:

E ¼ r2; F ¼ 0; G ¼ 1þ r02 ð3Þ

where r0 is the first derivative of r with respect to z. Substitution of
Eq. (3) into the Liouville formula [15] leads to the expression for the
geodesic curvature kg:

kg ¼
da
dl
þ r0 sina

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02
p ð4Þ

where a is the angle between the roving path and the meridional
direction of the dome, i.e., the winding angle, as shown in Fig. 1; l
is the arc length along the roving path.

The normal curvature, kn, can be expressed in terms of the main
curvatures in the meridional and parallel directions. According to
the Euler formula [15], we obtain:

kn ¼ �
r00

ð1þ r02Þ3=2 cos2 aþ 1
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02
p sin2 a ð5Þ

where r00 is the second derivative of r with respect to z. By substitut-
ing Eqs. (4) and (5) into (2), the differential equation for the non-
geodesic paths becomes:

da
dl
¼ �k

r00

ð1þ r02Þ3=2 cos2 a� 1
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02
p sin2 a

 !
� r0 sin a

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02
p ð6Þ

Since the fiber has an orientation a with respect to the meridian
(Fig. 2), the relation between dz/dl and the winding angle a can be
derived as follows:

dz
dl
¼ dz

dsmeridian
� dsmeridian

dl
¼ dzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r02
p

dz
� cos a ¼ cos affiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r02
p ð7Þ

Substitution of Eq. (7) into (6) leads, after some arrangements,
to the expression for determining non-geodesic trajectories with
respect to a and z:

Fig. 1. A generic shell of revolution.
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