ELSEVIER

Contents lists available at ScienceDirect

Corrosion Science

journal homepage: www.elsevier.com/locate/corsci

Corrosion of low alloy steel and stainless steel in supercritical CO₂/H₂O/H₂S systems

Liang Wei, Xiaolu Pang, Kewei Gao*

Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, China

ARTICLE INFO

Article history: Received 6 April 2016 Received in revised form 1 June 2016 Accepted 2 June 2016 Available online 3 June 2016

Keywords: A. Low alloy steel A. Stainless steel

B. Weight loss B. SEM

B. Raman spectroscopy

C. Acid corrosion

ABSTRACT

The corrosion of low alloy steel and stainless steel in the dynamic supercritical $CO_2/H_2O/H_2S$ system was studied. A Cr-containing scale, mainly consisted of $FeCO_3$, $Cr(OH)_3$ and iron sulfide (mackinawite), formed on low alloy steel. $FeCO_3$ formed via the solid state reaction and precipitation reaction, while mackinawite could only form via the solid state reaction. In the aqueous phase, low alloy steel suffered severe general and localized corrosion, but 316 L stainless steel suffered pitting corrosion. In the supercritical CO_2 phase, localized corrosion was dominant for low alloy steel, and 316 L stainless steel was highly resistant to corrosion.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon capture and storage (CCS) is recognized as an effective technology to reduce carbon emission [1]. CCS primarily involves three stages: CO_2 capture, CO_2 transport, and CO_2 injection into geological reservoirs [2]. Captured CO_2 can also be used in the oil and gas fields for enhanced oil/gas recovery (EOR/EGR) [3]. In addition, during the exploitation of high pressure gas fields with large quantities of CO_2 , the CO_2 must be separated from the gas, captured and transported to the storage sites [4], which presents similar challenges as seen in the CO_2 transport related to CCS; while the inlet temperature of the transport pipeline (80 °C) is higher than that of CO_2 transport. An important risk that must be understood in CCS, EOR/EGR applications and the exploitation of high pressure gas fields is the supercritical CO_2 (SC CO_2) corrosion problem of the steel materials.

Whether in the SC CO₂ phase (SC CO₂-rich phase, which is normally present in the CO₂ transport and injection processes) or in the aqueous phase (water-rich phase, such as the saline aquifers, normally present in the CO₂ injection process and oil and gas production), SC CO₂ can dissolve in the aqueous phase, significantly decreasing the pH value. In these two phases, once the aqueous phase encounters steel, the steel undergoes severe corrosion [5].

Steel corrosion in SC CO_2/H_2O environments has been investigated by researchers over the past few years [5–10]. In addition to H_2O , other impurities may exist in the SC CO_2 system, such as O_2 , SO_2 , NO_2 , and H_2S [11–13]. The current studies on the SC CO_2 corrosion mainly focus on impurities such as O_2 , SO_2 and SO_2 , while the effect of SO_2 on the corrosion of steel in SC SO_2 systems has rarely been reported. Most investigations on the effect of SO_2 on steel corrosion are under low SO_2 partial pressure conditions and with a high SO_2 content [14–19].

The corrosion rates of carbon steels in the SC CO₂/H₂O environments (especially in the water-rich phase) are high [6-8,20]; thus, steel with a high corrosion resistance to SC CO₂ should be studied and developed. In addition, to enhance the corrosion resistance of steel, low alloy steels have been developed, and the effect of alloy elements (especially Cr) on the CO₂ corrosion behavior of steels under low CO₂ partial pressure conditions has been widely investigated [21–24]. However, there are few studies focusing on the SC CO₂ corrosion behavior of low alloy steel. As summarized in the previous study [25], the content of H₂S was almost less than 200 ppm, basing on health and safety considerations; while the researcher have found that the steel suffered severe corrosion in SC CO₂/H₂O environment containing 200 ppm [4]. Therefore, a lower H₂S content (50 ppm (mole)) was selected to investigate in this study. The objective of this work is to understand the corrosion mechanism of low alloy steel and stainless steel in the dynamic SC CO₂/H₂O/H₂S system.

^{*} Corresponding author. E-mail address: kwgao@yahoo.com (K. Gao).

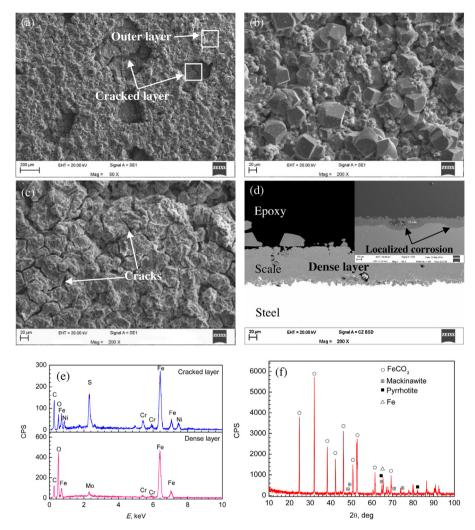


Fig. 1. (a, b, c) SEM surface morphology, (d) cross-section morphology, (e) EDS analysis and (f) XRD spectra of the corrosion product scale formed on P110 low alloy steel immersed in SC CO₂-saturated aqueous phase at 10 MPa and 80 °C with 1 m/s flow velocity for 240 h: (b) the magnified outer FeCO₃ layer in (a); (c) the magnified cracked layer in (a).

Table 1 Chemical compositions of the three different types of steels (wt.%).

Steels	C	Si	Mn	Mo	Cr	Ni	P	S	Fe
P110 3Cr 316L	0.14	0.28	0.50	0.16	2.68	0.17	≤0.009 ≤0.009 0.016	_ ≤0.003	Bal. Bal. Bal.

2. Experimental

2.1. Materials and solution

P110 and 3Cr low alloy steels and 316 L stainless steel were used in this study. The chemical compositions of the three steels are listed in Table 1. Specimens were machined with dimensions of $10 \times 10 \times 3 \, \text{mm}^3$. The specimens were ground with 800-grit silicon carbide (SiC) paper and rinsed with deionized water followed by alcohol. After drying with cold air, the specimens were weighed using an electronic balance with a precision of 0.1 mg and then were stored in a desiccator until use.

Before the specimens were placed in an autoclave, they were fixed in a specimen holder composed of polytetrafluoroethene (PTFE) to prevent the galvanic effect, and six specimens were placed in the autoclave for each test. The corrosion medium was 3.5 wt%

NaCl. Prior to each exposure experiment, the solution was deaerated by CO_2 bubbling for 12 h.

2.2. Corrosion experiments

Corrosion experiments were conducted in a high temperature and high pressure autoclave, and a schematic diagram was presented in detail in a previous study [25]. After the solution was placed in the autoclave, the autoclave was sealed and deoxygenated continuously by purging with CO_2 at ambient temperature and pressure for 2 h. Subsequently, a mixture of CO_2 and CO_2 with a certain ratio was introduced into the autoclave that was adjusted to the required temperature (80 °C) and pressure (10 MPa). The flow velocity was 1 m/s, and the test duration was 240 h.

Two corrosion systems were considered in this study: the CO₂-saturated aqueous phase and the water-saturated SC CO₂ phase. During the experiment in the aqueous phase, 1000 mL of solution was introduced into the autoclave. Based on the model of Spycher et al. [26], the saturation limit of H₂O in the SC CO₂ phase at 80 °C and 10 MPa is approximately 10,000 ppm. Therefore, to ensure the water-saturated SC CO₂ state during the test, 100 mL of solution was introduced into the autoclave.

Download English Version:

https://daneshyari.com/en/article/1468331

Download Persian Version:

https://daneshyari.com/article/1468331

Daneshyari.com