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a b s t r a c t

After reviewing of the data for primary water stress corrosion cracking (PWSCC) for Alloy 600 in the
literature, a crack growth rate (CGR) database was assembled, and an ANN model was developed and
trained upon the data, in order to model PWSCC in Alloy 600. The dependence of PWSCC CGR on each
of the principal independent variables of the system has been predicted. Sensitivity analyses were
conducted via ‘‘fuzzy logic’’ and the importance of each variable was analyzed and show that IGSCC in
Alloy 600 is primarily mechanical in character with the electrochemistry being a significant contributor.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Ni-based Alloy 600 has been used widely for steam generator
(SG) tubing and penetration nozzles for the control rod driving
mechanism (CRDM), and for other pressure boundary components,
in pressurized water reactors (PWR), because of its good corrosion
resistance. However, there have been many reports of intergranu-
lar stress corrosion cracking (IGSCC) in ‘‘mill-annealed’’ Alloy 600
resulting in component failure after long-term operation in PWR
primary environments. The first such corrosion mechanism to
cause concern in PWRs was IGSCC from the primary side of ‘‘hot
leg’’ steam generator tubes in contact with the primary coolant
(LiOH/H3BO3 at 290–330 �C), which has become known in the
nuclear power industry as primary water stress corrosion cracking
(PWSCC). This phenomenon is of great importance, considering the
safety issues involved and the costs to the consumer and operator,
alike. The problem could be significantly alleviated if a model was
available that could precisely predict the crack growth rate (CGR),
because then repairs might be affected during scheduled outages,
so as to avoid costly, unscheduled outages, the cost of which is
not built into the price of the product. However, it is well known
that CGR in Alloy 600 is controlled by many properties of the sys-
tem, reflecting a complex combination of stress, environment, and
a susceptible material. It is extremely difficult to study the influ-
ences of all possible parameters by independent experiment, due
to the difficulty in controlling or even measuring a large number
of independent variables simultaneously in the high pressure, high

temperature aqueous environment. Many studies have focused on
the establishment of PWSCC models and their use in predicting
CGR. Empirical/phenomenological models, including the Scott
model [1]; the similar Materials Reliability Program, MRP-55,
model [2]; and the MRP-115 model for weld metal [3] have been
developed for this alloy/environment system. Recently, a theoreti-
cal model known as the Fracture Research Institute (FRI) model has
been proposed by Shoji and other researchers from Tohoku
University [4]. The FRI model incorporates both electrochemistry
and fracture mechanics considerations, although the inclusion of
electrochemical factors is somewhat inadvertent in that the model
is calibrated on CGR data that are clearly affected by the electro-
chemistry of the system. The FRI model does not incorporate the
electrochemistry of the system explicitly. Thus, none of these
models incorporate explicitly electrochemical mechanisms, such
as that embodied in the Mixed Potential Model (MPM) for
estimating the electrochemical corrosion potential (ECP), or for
the purpose of describing ion transport down a crack or within
the external environment. However, the coupled-environment
fracture model (CEFM), which was developed by Macdonald et al.
[5,6] for calculating CGR in sensitized Type 304SS in light water
reactor (LWR) coolant environments, does incorporate physico-
electrochemical–mechanical factors with emphasis on both the
mechanics and electrochemistry of the system. This model, which
is based on the differential aeration hypothesis, takes into account
both electrochemical and mechanical processes, with crack
advance being assumed to occur through the slip/dissolution/
repassivation mechanism augmented by hydrogen-induced frac-
ture (HIF), and the basis of this model is a statement of charge
conservation and Faraday’s law of charge-mass equivalency. These
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constraints render the model deterministic, due to the fact that the
predictions are constrained to ‘‘physical reality’’ by the relevant
natural laws.

A major problem in qualifying models for predicting CGR in
Alloy 600 (and other alloys) is that CGR data, when shown in
two-dimensional plots (e.g., CGR versus extent of cold work or
CGR versus temperature), display a dispersion of several orders
of magnitude (in some cases up to 3–4 orders of magnitude). This
uncertainty arises partly from the failure of many researchers to
measure, control, or even report environmental parameters that
may have an obvious impact on CGR, such that the matrix contain-
ing all the independent variables information is almost always
‘‘sparse’’. As some of the missing information can be calculated
[e.g., conductivity can be calculated from the composition of solu-
tion [7] and ECP can be estimated from [H2], [H2O2], [H+], [O2], tem-
perature, and flow velocity (if known)] using the Mixed Potential
Model (MPM) [8], it is postulated that the measured CGR is usually
much more accurate than the two-dimensional plots demonstrate.
Another issue that needs to be considered is that the apparent dis-
persion is always so large that it is almost always possible to find
data in excellent agreement with any model predictions, so as to
‘‘prove’’ the efficacy of a particular model.

However, unlike the models mentioned above, an ANN model
contains no pre-conceived, physico-electrochemical model, but
instead seeks to identify and quantify hidden relationships
between the dependent and independent variables; in other words
an ANN ‘‘tells it the way it is’’. The main benefits are that prediction
results are based purely on data and not on preconceptions, and
that the network can extrapolate effects from learned relationships
without a mathematical model for extrapolation being specified.

2. Artificial neural network model

2.1. Introduction of artificial neural networks

Artificial neural networks (ANNs) are computational tools
inspired by an animal’s central nervous systems (in particular the
brain) that are capable of machine learning and pattern recognition.
They are usually presented as systems of interconnected ‘‘neurons’’
that can compute values from inputs by feeding information
through the network. ANNs have been applied successfully by a
number of researchers in the field of corrosion prediction and a
few of these prior works are as follows. P.-C. Lu, et al. were the first
to use artificial neural networks to study stress corrosion cracking
[9,10], in which they applied an ANN to the study of IGSCC in sensi-
tized Type 304 SS in high temperature water at 288 �C. Cai et al. [11],
Pintos et al. [12], and Halama et al. [13] studied atmospheric
corrosion using ANNs, and through sensitivity analysis, the effects
of various factors were demonstrated. Smets and Bogaerts [14] suc-
cessfully used ANNs for predicting SCC risk in austenitic stainless
steels, and for defining the combined effects of three parameters
(temperature, chloride concentration, and oxygen content) on the
occurrence of SCC in austenitic chromium-nickel stainless steels in
high-temperature water. Benhaim and Macdonald [15] applied an
ANN to the study of the effect of various parameters on the acidity
of simulated geological salt repositories, which contain brine inclu-
sions, and predicted that the pH of the saturated brine inclusions
would lie between 3.2 and 5, as the temperature of the repository
decayed over thousands of years. All of these studies demonstrated
that an ANN is an efficient computational tool for analyzing complex
systems, especially when conventional modeling by analyzing spe-
cific reactions and processes may be difficult or unfeasible.

2.1.1. Basic elements
As noted above, an artificial neural network (ANN) is a compu-

tational tool based on biological neural networks and comprises an

interconnected group of artificial neurons. The schematic of a
three-layer neural network is shown in Fig. 1(a). Each layer con-
sists of one or more neurons, as defined in Fig. 1(b). Each neuron
in the first layer (also known as the input layer) receives a user
specified input vector, processes the input vector and generates
an output value. The output values from this layer are then passed
on as inputs to each neuron in the next layer. The output values
from the last layer (known as the output layer) correspond to the
quantities that we need. The layers between the input and the out-
put layers are termed ‘‘hidden layers’’.

Mathematically, the output of the kth neuron in the lth layer
receiving a n-dimensional input vector is expressed as the follow-
ing equation:

yðlÞk ¼ f bðlÞk þ
Xn

i¼1

wðlÞk;ix
ðlÞ
i

 !
ð1Þ

where yk is the output of the kth neuron from an input vector
x = (x1, . . . ,xn), with xi representing the input parameters. The
wðlÞk;i values are the weights, which are used for scaling the respec-
tive input value to the neuron. Thus, within each layer, these
weights indicate the relative importance of the parameters. The
parameter bk is termed the bias, which is used to account for
the contribution of the unknown, but influential parameters, that
have not been included in the analysis, most likely because of the
lack of relevant data. The bias is much like a weight, except that
its value is determined during the training of the net and is inde-
pendent of the weighted inputs from the neurons from the previ-
ous layer (see Fig. 1). Its function is to modify the output, as
indicated in Eq. (1). The weighted sum of the inputs and the bias
value are passed through the transfer function f, which produces
the scalar output. The establishment of the weights essentially
imbues the net with ‘‘memory’’ and enables the relationships
between the output (CGR) and each of the independent input
variables (temperature, ECP, KI, conductivity, pH, boron content,
lithium content and extent of cold work) to be defined. In this
study, a hyperbolic tan (tanh) function has been used as the
transfer function in the hidden layers, while a linear function,
rather than a sigmoid function, as used for the hidden layers,
has been used for output layer.

2.1.2. Architecture
The number neurons in the input and output layer effectively

represents the number of variables used in the prediction and
the number of variables to be predicted, respectively. The hid-
den layers act as feature detectors and, in theory and practice,
there is generally more than one hidden layer. However, univer-
sal approximation theory suggests that a network with a single
hidden layer with a sufficiently large number of neurons can
interpret any input–output structure [16]. The critical aspect is
the choice of the number of neurons in the hidden layer. More
hidden neurons result in a longer training period, while fewer
hidden neurons provide faster training at the cost of having
fewer feature detectors.

2.1.3. Training
Once the architecture of an artificial neural network and the

network weights and biases are initialized, the network is ready
for training. The training process of an ANN involves tuning the
values of the weights and biases of the network to optimize the
performance of network, which is judged by the mean squared
error (r) defined below. The general objective is to make output
ti and input ai identical for i = 1,2, . . . ,n.

r ¼ 1
N

XN

i¼1

ðeiÞ2 ¼
1
N

XN

i¼1

ðti � aiÞ2 ð2Þ
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