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HIGHLIGHTS

« The two-phase model was modified
by incorporating it with solid
entrainment.

« The proposed modified two-phase
model was validated with actual
plant data.

« The hybrid controller performed
better compared to the FLC and PID
controllers.
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ABSTRACT

In order to explore the dynamic behavior and process control of reactor temperature, a modified two-
phase dynamic model for gas phase propylene copolymerization in a fluidized bed reactor is developed
in which the entrainment of solid particles is considered. The modified model was compared with well-
mixed and two-phase models in order to investigate the dynamic modeling response. The modified
two-phase model shows close dynamic response to the well-mixed and two-phase models at the start
of the polymerization, but begins to diverge with time. The proposed modified two-phase and two-phase
models were validated with actual plant data. It was shown that the predicted steady state temperature by
the modified two-phase model was closer to actual plant data compared to those obtained by the two-
phase model. Advanced control system using a hybrid controller (a simple designed Takagi-Sugeno fuzzy
logic controller (FLC)) integrated with the adaptive neuro-fuzzy inference system (ANFIS) controller was
implemented to control the reactor temperature and compared with the FLC and conventional PID con-
troller. The results show that the hybrid controller (ANFIS and FLC controller) performed better in terms
of set point tracking and disturbance rejection compared to the FLC and conventional PID controllers.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Polymerization is an important process in the petrochemical
and polymer industries. It is a complicated process with complex
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chemical kinetics and physical mechanisms [1,2], thus making its
modeling and control a very challenging task. There are a number
of papers about successful modeling and controlled of polymeriza-
tion processes [3-19]. However, few attempts have been reported
on modeling and the control of polypropylene (PP) copolymeriza-
tion in fluidized bed reactors (FBR). Copolymerization is a process
in the production of polymers from two (or more) different types of
monomers which are linked in the same polymer chain.
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Nomenclature

A cross sectional area of the reactor (m?)

ALEt3 triethyl aluminum cocatalyst

Ar Archimedes number

B; moles of reacted monomer of type i bound in the poly-
mer in the reactor

Cpi specific heat capacity of component i (J/kg K)

Cpg specific heat capacity of gaseous stream (J/kg K)

Cp pol specific heat capacity of product (J/kg K)

Cowmi specific heat of component i (J/kmol K)

dy bubble diameter (m)

dpo initiate bubble diameter (m)

dp particle diameter (m)

d, dimensionless particle size

Dy gas diffusion coefficient (m?/s)

Dy reactor diameter (m)

Feat catalyst feed rate (kg/s)

fi fraction of total monomer in the reactant gas which is
monomer M,

g gravitational acceleration (m/s?)

H height of the reactor (m)

Hpe bubble to emulsion heat transfer coefficient (W/m? K)

Hp bubble to cloud heat transfer coefficient (W/m? K)

Hee cloud to emulsion heat transfer coefficient (W/m3 K)

H, hydrogen

Im impurity such as carbon monoxide

i monomer type

] active site type

kf (j) formation rate constant for a site of type j

kfh; (j) transfer rate constant for a site of type j with terminal
monomer M; Reacting with hydrogen

kfm; (j) transfer rate constant for a site of type j with terminal
monomer M; Reacting with monomer My

kfr; (j)  transfer rate constant for a site of type j with terminal
monomer M; Reacting with Aiets

kfs; (j) spontaneous transfer rate constant for a site of type j
with terminal monomer M;

kg gas thermal conductivity (W/m K)

kh; (j)  rate constant for reinitiation of a site of type j by mono-
mer M,

kh; (j) rate constant for reinitiation of a site of type j by cocat-
alyst

Ki; rate constant for initiation of a site of type j by mono-
mer M,

kp;. (j) propagation rate constant for a site of type j with termi-
nal monomer Mire acting with monomer Mg

kpr propagation rate constant (m?3/kmol s)

Ky elutriation constant in bubble phase (kg m? s~1)

Kpe bubble to emulsion mass transfer coefficient (s—1)

Ky bubble to cloud mass transfer coefficient (s~1)

Kee cloud to emulsion mass transfer coefficient (s—1)

Ke elutriation constant in emulsion phase (kg m? s—1)

mw; molecular weight of monomer i (g/mol)

M; concentration of component i in reactor (kmol/m?3)

Milin concentration of component i in the inlet gaseous
stream

N (j) potential active site of type j
N (0,j) uninitiated site of type j produced by formation at sites
of type j reaction

Nq(j) spontaneously deactivated site of type j

Nq (0, j) impurity killed sites of type j

Ny uninitiated site of type j produced by transfer to hydro-
gen reaction

Nj(r,j)  living polymer molecule of length r, growing at an ac-
tive site of type j, with terminal monomer m;

Q(r+j) dead polymer molecule of length r produced at a site of

type j

P pressure (Pa)

PP polypropylene

R number of units in polymer chain

R; instantaneous consumption rate of monomer i (kmol/s)

Rp production rate (kg/s)

Ry volumetric outflow rate of polymer (m?3/s)

Reqs Reynolds number of particles at minimum fluidization
condition

T time (s)

T temperature (K)

Tin temperature of the inlet gaseous stream (K)

Tret reference temperature

Uy bubble velocity (m/s)

Upr bubble rise velocity (m/s)

Ue emulsion gas velocity (m/s)

Ug superficial gas velocity (m/s)

Uns minimum fluidization velocity (m/s)

Ut terminal velocity of falling particles (m/s)

U; dimensionless terminal falling velocity coefficient

1% reactor volume (m?)

Vo volume of polymer phase in the reactor (m?)

Wy weight of solids in the bubble phase (kg)

We weight of solids in the emulsion phase (kg)

Y (n,j) Nth moment of chain length distribution for living poly-
mer produced at a site of type j

X (n,j) Nth moment of chain length distribution for dead poly-
mer produced at a site of type j

Greek letters
AHgr heat of reaction (J/kg)

& void fraction of bubble for Geldart B particles

1 volume fraction of bubbles in the bed

Ee void fraction of emulsion for Geldart B particles
Emf void fraction of the bed at minimum fluidization
u gas viscosity (Pas)

Py gas density (kg/m?)

Ppol polymer density (kg/m?)

s sphericity for sphere particles

Subscripts and superscripts

1 propylene

2 ethylene

I component type number
In inlet

] active site type number
mf minimum fluidization
pol polymer

ref reference condition

In the industrial PP copolymerization, the most commonly used
reactor configuration is the FBR [20-22]. With this reactor config-
uration, shown schematically in Fig. 1, catalyst (Ziegler-Natta and
triethyl aluminum) and reactants (propylene, ethylene and hydro-
gen) are fed continuously into the reactor with nitrogen as the car-

rier gas. Conversion of monomers is low for a single pass through
the FBR and it is necessary to recycle the unreacted monomers.
Unreacted monomer gases are removed from the top of the reactor.
A cyclone is used to separate the solid particles (i.e., catalyst and
low molecular weight polymer particles) from the gas in order to
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