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a b s t r a c t

The probability distributions of external-corrosion pit depth and pit growth rate were investigated in
underground pipelines using Monte Carlo simulations. The study combines a predictive pit growth model
developed by the authors with the observed distributions of the model variables in a range of soils.
Depending on the pipeline age, any of the three maximal extreme value distributions, i.e. Weibull, Fréchet
or Gumbel, can arise as the best fit to the pitting depth and rate data. The Fréchet distribution best fits the
corrosion data for long exposure periods. This can be explained by considering the long-term stabilization
of the diffusion-controlled pit growth. The findings of the study provide reliability analysts with accurate
information regarding the stochastic characteristics of the pitting damage in underground pipelines.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Aging underground oil and gas pipelines can suffer from several
localized forms of corrosion, primarily pitting, which results from
pipe coating disbondment and inadequate cathodic protection
[1]. The severity of the threat posed by external pitting corrosion
in a pipeline depends upon the distribution of pit depths and the
rate of pit growth. The distribution of pipeline pit depths at a given
time can be measured by in-line inspection (ILI) or can be esti-
mated from direct observation of a sufficiently high number of
excavations. The corrosion rate can be estimated by comparing
successive in-line inspections [2–4] or it can be assessed from di-
rect corrosion rate measurements [1]. The advantages and disad-
vantages of each of these approaches have been discussed
elsewhere [1–5].

A knowledge of the corrosion rate (v) probability distribution is
critical for developing reliability and risk-based models for inspec-
tion and maintenance planning of corroded pipelines [4–8]. Let us
assume that the probability distribution of pit depths (f(x)) in a gi-
ven pipeline has been measured at a given time (t) and that the
probability distribution of the pitting rate (g(v)) is known. If only
the threat of leakage through the pipeline wall is considered, then
the pipeline reliability (R) at a later time (t + d, d > 0) can be pre-
dicted using the following equation [4,8]:

Rðt þ dÞ ¼ 1�
Z 1

pwt

Z 1

0
gðvÞf ðx� vdÞdvdx ð1Þ

where pwt is the pipe wall thickness.

In physical terms, Eq. (1) states that the reliability of a pipeline
decreases with increased prediction time and with a greater mean
and variance of the pitting corrosion rate distribution. Additionally,
it is well known that the uncertainty in pipeline reliability predic-
tions increases with increased pit depth measurement tolerance
and pitting rate uncertainty [6,7]. However, in spite of the impact
that the pitting rate has on pipeline reliability, the amount of infor-
mation reported in the literature regarding the probabilistic distri-
bution of corrosion rates in buried pipelines is rather scarce. The
existing empirical models for the average value of corrosion rate
in underground pipelines as a function of the local soil characteris-
tics cannot fully predict the statistical properties of corrosion rate
based on the observed soil properties. To the best of the authors’
knowledge, there are only a few models available for predicting
external corrosion rate distributions in underground pipelines
[3–5].

Recently, Kiefner and Kolovitch [5] developed a Monte Carlo
method for determining the corrosion rate distribution in buried
pipelines that uses the probability distributions of corrosion depth
and initiation time. In order to estimate corrosion growth rate dis-
tribution, random values were drawn from the (measured) depth
and (assumed) starting time distributions and entered into a
Monte Carlo algorithm based on a linear growth model. The results
were very sensitive to the distribution of corrosion starting times,
which was proposed to be inferred from pipeline operating re-
cords. Application of the method to real pit depth data measured
by in-line inspection produced average corrosion rates (6–11
mpy) that were lower than the default rate given in Appendix D
of NACE RP0505–2002 (16 mpy) [9].

Alamilla and Sosa [4] developed a stochastic model for corro-
sion damage evolution. In this model, the probability distributions
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of corrosion depth and corrosion rate at a given time are estimated
analytically from the empirical probability density function of cor-
rosion damage depth, the number of detected corrosion features
and the distribution of the time of corrosion nucleation. The aver-
age corrosion rate of each detected corrosion metal loss was
approximated by a linear relationship between the defect depth
and lifetime. It was assumed that the corrosion starting times arise
from a homogeneous Poisson process. Additionally, the authors
claim that the intervening environmental factors in the corrosion
process are considered explicitly in their model. The common lim-
itations of the two predictive approaches outlined above are the
assumption of a linear pit growth with respect to time, the need
for inferring the distribution of corrosion initiation time and the
lack of an explicit consideration of soil and pipe characteristics in
determining pit growth.

In this work, the statistical characteristics of the local soil and
pipe variables are used to predict the time evolution of the prob-
ability distribution of pit depth and pit growth rate in under-
ground pipelines. The investigation is based on a field study
recently reported by the authors, from which a non-linear, multi-
variate predictive model for maximum pit depth in underground
pipelines was proposed [10]. The time derivation of this depth
model led to a predictive formula for the time evolution of the
average corrosion rate as a function of the local environmental
factors. In order to estimate the time dependence of pitting cor-
rosion depth and rate distributions, Monte Carlo simulations
were conducted based on the proposed pitting model. The prob-
ability functions fitted to the empirical distributions of the soil
and pipe characteristics were used as the inputs for the Monte
Carlo simulations. The type, mean and variance of the distribu-
tion that best fit the corrosion depth and rate data produced by
this procedure were obtained for pipelines in contact with clay,
clay loam and sandy clay loam soils. A real pipeline reliability
assessment is used as a case study to illustrate an application
of the results and how they can improve the accuracy of reliabil-
ity estimates.

2. Model foundations

2.1. Field data collection

In a field study recently reported by the authors [10], maximum
pit depth and local soil and pipe data were collected over a three-
year period from 250 excavated pipeline sites located across south-
ern Mexico. In the field, pits were identified as corrosion-caused
metal losses with a diameter equal to or less than two times the

pipe wall thickness [10]. The studied pipelines had been in service
for up to 50 years. The measured soil variables included resistivity,
pH, water content, redox potential, bulk density and dissolved
chloride, bicarbonate and sulphate ion concentrations. The pipe-
to-soil potential, pipe coating type and pipeline age were also in-
cluded within each dataset. Based on the relative proportions of
sand, silt and clay, the soil samples were grouped into four textural
classes: clay (C), clay loam (CL), sandy clay loam (SCL) and a gen-
eric class containing all collected samples (All).

The probability distributions of the empirical soil and pipe
variables were investigated for use as inputs to the Monte Carlo
simulations. The probability density function that best-fits the
experimental data associated with each variable in each soil class
was determined using EasyFit 3.2 [11]. The results of the fitting
analysis are presented in Table 1. For each variable considered
in this table, the parameters of the distributions fitting the ob-
served data were determined using the MLE (maximum likelihood
estimates) method, whereas the best model was selected based on
the value of the Kolmogorov–Smirnov (K–S) test statistic. The ran-
dom values put into the Monte Carlo simulations were drawn
from these distributions. The influence of the pipeline coating
type on pitting corrosion was modelled numerically using a scor-
ing model previously reported by the authors [10]. This model,
presented in Table 2, is based on practical criteria given in [12]
and [13]. Higher scores were assigned to coatings that provide
lower protection. The proposed scores quantify the general body
of practical experience reported in the literature on the suscepti-
bility of pipeline coatings to failure [1,3,10,12,13]. The probability
of occurrence of each score used in the Monte Carlo simulations is
also given in Table 2. It was assigned according to the frequency
at which the corresponding coating was observed during the field
study reported in [10].

2.2. Maximum pit depth model

Pit growth in low-carbon steel is commonly modelled with a
power law function that relates the average value of the maximum
pit depth (dm) to the exposure time [10,14]:

dmðtÞ ¼ kðt � t0Þa ð2Þ

where the subscript ‘‘m” is used for predictions made for maximum
pit depth (deeper pits), t0 is the corrosion starting time, and k and a
are the pitting proportionality and exponent factors, respectively. In
most pitting corrosion studies, k and a are assumed to be constant,
with a ranging from 0.3 to 1.0 [15].

Table 1
Statistical fitting of the observed corrosion data.

Variable, symbol (units) Probability density functiona

Clay (110)b Clay loam (61) Sandy clay loam (79) All (250)

Max. pit depth, dm (mm) GEV (2.25, 3.90)c GEV (1.88, 2.97) GEV (1.25, 0.99) GEV (1.84, 2.92)
Resistivity, re (X–m) Weibull (62, 4275) Weibull (28, 566) Lognormal (49, 2363) Lognormal (50, 2931)
Sulphate, sc (ppm) Gamma (131, 12566) Lognormal (208, 65549) Weibull (144, 9836) Lognormal (154, 25328)
Bicarbonate, bc (ppm) Lognormal (19, 639) Lognormal (23, 548) Lognormal (14, 36) Lognormal (19, 436)
Chloride, cc (ppm) Lognormal (53, 4709) Lognormal (45, 2946) Lognormal (22, 559) Lognormal (41, 3135)
Water content, wc (%) Normal (24, 47) Weibull (25, 27) Normal (22, 33) Normal (24, 38)
pH, ph Gumbel (5.94, 0.97) Gumbel (6.36, 0.77) Normal (6.23, 0.637) Gumbel (6.13, 0.84)
Pipe/soil potential, pp (V)d Normal (�0.86, 0.04) Normal(�0.81, 0.04) Normal (�0.92, 0.023) Normal (�0.86, 0.04)
Bulk density, bd (g/ml) Normal (1.22, 0.003) Gumbel (1.32, 0.0005) Gumbel (1.39, 0.002) Normal (1.30, 0.007)
Redox potential, rp (mV)e Uniform (2.14, 348)f Uniform (19, 301) Uniform (20, 339) Uniform (2.14, 348)

a Expressed in Type(mean, variance) format.
b Soil class (number of field observations).
c Generalized extreme value.
d Relative to a Cu/CuSo4 (sat.) reference electrode.
e Relative to the standard hydrogen electrode.
f The range of the variable is given instead of the two first moments.
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