Contents lists available at ScienceDirect

Journal of Asian Ceramic Societies

journal homepage: www.elsevier.com/locate/jascer

Formation of hydrogen from the CO– H_2O system using porous Gd-doped ceria electrochemical cell with MnO cathode and Fe₃O₄ anode

Koki Ueda^a, Yoshihiro Hirata^{a,*}, Soichiro Sameshima^a, Taro Shimonosono^a, Katsuhiko Yamaji^b

^a Department of Chemistry, Biotechnology, and Chemical Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
^b Fuel Cell Group, Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

ARTICLE INFO

Article history: Received 16 September 2014 Received in revised form 31 October 2014 Accepted 5 November 2014 Available online 21 November 2014

Keywords: Water-gas shift reaction Electrochemical cell MnO Fe₃O₄ Gadolinium-doped ceria

ABSTRACT

This paper reports the outlet gas composition and phase change of electrodes during the CO–H₂O reaction $(CO+H_2O \rightarrow H_2+CO_2)$ using an electrochemical cell with MnO–GDC (Gd-doped ceria: $Ce_{0.8}Gd_{0.2}O_{1.9}$) cathode/porous GDC electrolyte/Fe₃O₄–GDC anode system. In the cathode, oxidation of MnO by H₂O (3MnO+H₂O \rightarrow Mn₃O₄+H₂) and electrochemical reduction of Mn₃O₄ occurred (Mn₃O₄+2e⁻ \rightarrow 3MnO+O²⁻). In the anode, reduction of Fe₃O₄ by CO (Fe₃O₄+CO \rightarrow 3FeO+CO₂) and electrochemical oxidation of FeO occurred (3FeO+O²⁻ \rightarrow Fe₃O₄+2e⁻). H₂ and CO₂ gases were produced through the above catalytic reactions. The fraction of H₂ gas in the outlet gas increased at a high heating temperature and was 30–50% at 700 °C. As a parallel reaction of the CO–H₂O reaction, the supplied CO gas was decomposed to CO₂ and solid carbon over Fe₃O₄ in the anode at low temperatures (disproportion of CO, 2CO \rightarrow CO₂ + C).

© 2014 The Ceramic Society of Japan and the Korean Ceramic Society. Production and hosting by Elsevier B.V. All rights reserved.

1. Introduction

The decrease in the concentration of CO_2 in atmosphere and the production of a H_2 fuel for fuel cells are two important strategies for the suppression of global warming. In this research group, (a) dry reforming of a biogas (typically 60% CH_4 –40% CO_2 composition) to produce a H_2 fuel [1–4], (b) a water-gas shift reaction to produce a H_2 fuel [5] and (c) decomposition of CO gas into solid carbon and oxygen [6,7] have been intensively studied using a porous electrochemical cell. The above reactions are expressed by Eqs. (1)–(3).

 $(reforming)CH_4 + CO_2 \rightarrow 2H_2 + 2CO \tag{1}$

 $(\text{shift reaction})\text{CO} + \text{H}_2\text{O} \rightarrow \text{H}_2 + \text{CO}_2$ (2)

 $(decomposition)2CO \rightarrow 2C + O_2 \tag{3}$

Reactions (1) and (2) proceed smoothly in a porous Gd-doped ceria electrolyte cell (GDC) with metal catalyst electrodes. The electrochemical decomposition of CO gas occurs through a porous or dense yttria-stabilized zirconia cell (YSZ) with Ni cathode and Ru anode. The combination of Eqs. (1)–(3) provides an ideal solution for the production of a H₂ fuel and the CO₂ decomposition at a same time, which is expressed by Eq. (4).

Biogas
$$(3CH_4 + 2CO_2) + CO_2(circulated) + H_2O$$

 $\rightarrow 7H_2 + CO_2(circulated) + 5C + 5/2O_2$ (4)

Since the true biogas is enriched in CH_4 than Eq. (1), the CO_2 required in Eq. (4) is supplied from the shift reaction by Eq. (2). The CO_2 produced in Eq. (2) is circulated in Eq. (4). The excess CO gas produced in Eq. (1) is decomposed by Eq. (3). The reaction system in Eq. (4) can be also applied to a natural gas enriched with CH_4 (>90 vol%). Eq. (5) shows the combined chemical reaction for 100% CH_4 gas.

Natural gas $(CH_4) + H_2O + CO_2$ (circulated)

$$\rightarrow 3H_2 + CO_2 (circulated) + C + 1/2O_2$$
(5)

Fig. 1 shows an electrochemical cell for the shift reaction of CO with H_2O . H_2O vapor in the cathode reacts with the supplied electrons to form H_2 and O^{2-} ions through the catalytic reactions of metals by Eqs. (7) and (8) in Fig. 1. The formed O^{2-} ions and CO gas

2187-0764 © 2014 The Ceramic Society of Japan and the Korean Ceramic Society. Production and hosting by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jascer.2014.11.002

^{*} Corresponding author. Tel.: +81 99 285 8325; fax: +81 99 257 4742. *E-mail address*: hirata@apc.kagoshima-u.ac.jp (Y. Hirata).

Peer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society.

Fig. 1. Electrochemical cell for the reaction of CO with H₂O.

are transported to the anode through a porous GDC layer. In the anode, CO gas reacts with O^{2-} ions to produce CO_2 and electrons through catalytic reactions by Eqs. (10) and (11). The combination of Eqs. (6) and (9) yields the shift reaction by Eq. (12). The CO₂ gas separated from a H₂ fuel is mixed again with CH₄-rich biogas or natural gas (Eqs. (4) and (5)). Recently we have reported that a porous cell of Co-GDC (cathode)/porous GDC (electrolyte)/Fe-GDC (anode) system worked well to produce a H₂-enriched mixed gas of 15% CO-45% H₂-40% CO₂ at 400 °C [5]. Co metal and Fe ions in Fe₃O₄ accelerated the oxidation-reduction reactions in each electrode. Our next challenge is to examine the catalytic shift reaction with an abundant element except for Co metal (25 ppm in igneous rock). A candidate element is Mn (950 ppm in igneous rock) and its valence changes in the wide range of -3 to +7. In this paper, MnO was used in the cathode for the electrochemical shift reaction at 300-700 °C and the outlet gas composition was compared with the result measured in the cathode with Co metal.

2. Experimental procedure

2.1. Preparation of electrochemical cell

Table 1 shows the components of the electrochemical cell used. The electrode of the cell was designed to contain 30 vol% metal (Mn, Fe) and 70 vol% GDC. The detailed preparation method for the metal-GDC composite powder and the fabrication method of the layered electrochemical cell were reported in our previous papers [1-5]. The GDC powder composed of Ce_{0.8}Gd_{0.2}O_{1.9} was prepared by heating the oxalate solid solution precursor $(Ce_{0.8}Gd_{0.2})_2(C_2O_4)_3$ at 1000 °C for 1 h in air. The GDC powder was milled with 3mm diameter alumina balls for 24 h. The milled GDC powder was immersed into a 0.4 M MnSO₄ solution to make MnO-GDC electrode. The suspension was stirred for 24 h and then freeze-dried. The freeze-dried powder was then heated at 1000 °C for 1 h in air. Fe₂O₃-GDC electrode was fabricated by mixing the milled GDC powder and Fe₂O₃ powder prepared by the pyrolysis of Fe(NO₃)₃ at 900 °C for 2 h in air. The 10-mm-diameter and 1-mm-thick porous GDC powder disk was sandwiched between a cathode powder layer

Table 1

Components of electrochemical cell used.

Cathode (thickness, open porosity)	Electrolyte (thickness, open porosity)	Anode (thickness, open porosity)
MnO-GDC (5 mm, 42%)	GDC (1 mm, 38%)	Fe ₂ O ₃ –GDC (5 mm, 36%)

(5 mm thick) and an anode powder layer (5 mm thick) and pressed uniaxially at 80 MPa, followed by isostatic pressing at 190 MPa, and then heated at 900 °C for 2 h in air. The phases of the heated electrochemical cells were identified by X-ray diffraction (RINT 2200PCH/KG, Rigaku Co., Japan). The bulk and apparent densities of the sintered porous electrodes were measured by the Archimedes method in distilled water.

2.2. Electrochemical shift reaction of CO with H₂O

Fig. 1 shows the diagram of the electrochemical reaction apparatus for shift reaction of CO with H₂O. Pt meshes with Pt wires were attached to both the electrodes using Pt paste. The electrochemical cell was set to an alumina holder and sealed by heating a glass O-ring at 900°C for 10 min. After cooling to 800°C, a 47% H₂-3% H₂O-50% Ar mixed gas was fed into both the electrodes at 100 ml/min for 24 h to reduce the oxides $(Mn_3O_4 + H_2 \rightarrow 3MnO + H_2O, Fe_2O_3 + 3H_2 \rightarrow 2Fe + 3H_2O)$. Then, 1 V of external voltage was applied with a potentiostat (HA-501G, Hokuto Denko Co., Japan). The 10 vol% CO-90 vol% Ar gas was fed into the cathode at 60 ml/min and mixed with liquid H₂O supplied at 2.9 ml/h at the molar ratio of $CO/H_2O = 1/7.35$. The composition of the outlet gas was analyzed by gas chromatography (GC 7100T, I-Science Lab Co. Ltd., Japan) with active carbon (60/80 mesh) and a thermal conductivity detector at 100 °C. After the measurement of gas fraction at a constant temperature, the applied voltage was switched off and the supplied gases were substituted for an Ar gas. After the heating temperature reached the next reaction temperature, CO gas and H₂O vapor were supplied again and the applied voltage was switched on. Elementary distribution of C, O, Ce, Gd, and Fe of cross section of the porous GDC cell after the shift reaction was measured by electron probe microanalyzer (EPMA, JXA-8230, JEOL Ltd., Japan).

3. Results and discussion

3.1. Shift reaction

Fig. 2 shows the fraction of outlet gas through the porous GDC electrochemical cell with MnO–GDC cathode and Fe₃O₄–GDC anode at 300–700 °C where the inlet gas of CO/H₂O = 1/7.35 volume ratio was passed. This cell produced H₂ and CO₂ gases with the H₂/CO₂ volume ratio \approx 1 at 600–400 °C. In the experiment at 700 °C, the H₂ content increased but was higher than the CO₂ content. This result is explained in the latter part. Fig. 3 shows the X-ray diffraction patterns of cathode (a) after the H₂ reduction and (b) after the shift reaction at 300 °C (Fig. 2). As produced Mn₃O₄ in the

Fig. 2. Fraction of outlet gas through the porous GDC electrochemical cell at 300-700 °C where the inlet gas of CO/H₂O = 1/7.35 volume ratio was passed.

Download English Version:

https://daneshyari.com/en/article/1473303

Download Persian Version:

https://daneshyari.com/article/1473303

Daneshyari.com