Contents lists available at ScienceDirect

Journal of Asian Ceramic Societies

journal homepage: www.elsevier.com/locate/jascer

AC conductivity and dielectric relaxation in V₂O₅-P₂O₅-B₂O₃ glasses

R.V. Barde^{a,*}, K.R. Nemade^b, S.A. Waghuley^c

^a Department of Engg. Physics, H.V.P.M. College of Engg. & Technology, Amravati 444 605, India

^b Department of Engg. Physics, J.D. College of Engg. & Technology, Nagpur, India

^c Department of Physics, Sant Gadge Baba Amravati University, Amravati 444 602, India

ARTICLE INFO

Article history: Received 19 September 2014 Received in revised form 30 November 2014 Accepted 30 November 2014 Available online 16 December 2014

Keywords: Dielectric loss Glass transition Thermal analysis Electrical conductivity

ABSTRACT

We investigated the AC conductivity in $60V_2O_5 - (40 - x)P_2O_5 - xB_2O_3$ (x = 5, 10, 20, 30 and 35 mol%) glasses as a function of temperature. The measurements were carried out in the frequency range from 20 Hz to 1 MHz with varying temperatures (303–473 K). The samples were characterized by using X-ray diffraction (XRD) and thermogravimetric-differential thermal analysis (TG-DTA) techniques. The molar volume increases monotonically with the decrease in density. The AC conductivity increases with B₂O₃ content and temperature. The AC conductivity exhibited a Jonscher's universal power law and it is observed that as the temperature increases, frequency exponent (s) decreases. The dielectric constant of the sample decreases with increasing frequency and increases with temperature and concentration of B₂O₃. The electric modulus representation has been used to provide comparative analysis of the ion transport properties in these glasses. Scaling by using electric modulus shows overlap on single master curve signifying that the conduction mechanism is independent of temperature.

© 2014 The Ceramic Society of Japan and the Korean Ceramic Society. Production and hosting by Elsevier B.V. All rights reserved.

structural environment of the glass network [8,9].

erties of glass samples.

2. Experimental

strength due to metal-oxygen bond (B–O). The study of dielectric parameters will uncover the way to understand more about the

From the literature survey, it is revealed that no unified stud-

ies of vanadate-phosphate-borate ($V_2O_5-P_2O_5-B_2O_3$) glasses are present in the literature of material science, which comprises

parameters like frequency exponent and scaling to modulus. There-

fore the aim of the present work is to investigate the effect of

addition of B₂O₃, temperature and frequency on the polarization

state of the glass samples by means of systematic determination

of conductivity, dielectric constant and modulus in the frequency

range of 20 Hz to 1 MHz and temperature range of 303-473 K. The

prepared glass samples were characterized through X-ray diffrac-

tion (XRD) and thermogravimetric-differential thermal analysis

(TG-DTA) is employed to study the structural and thermal prop-

The vanadate-phosphate-borate glasses in the composition of

 $60V_2O_5-(40-x)P_2O_5-xB_2O_3$, x=5, 10, 20, 30 and 35 mol% were prepared by a usual melt-quenching method. In this investigation the AR grade chemicals were weighed and mixed together. This

mixture was homogenized and melted in a silica crucible in a fur-

nace at 900 °C for 3 h and the melt was stirred to remove CO₂. After

1. Introduction

Conducting glasses have attracted much interest in the field of solid-state chemistry and materials science. Vanadium pentoxide has a well-known structure composed of VO₅ pyramids. The glass containing V₂O₅ shows semiconducting behaviour [1]. Transition metal oxides' glasses exhibit electronic conductivity. The electrical properties of these glasses are determined by the presence of the transition metal ions and the conductivity is described by the mechanism of polaron hopping [2,3]. Borate glasses are found to be very appealing amorphous materials, which possess the particular structure and physical properties for advance applications. In these glasses, two groups of bands are obtained due to trigonal BO3 and tetrahedral BO₄ units. The addition of transition metal ions to the borate glasses gives specific physical properties [4,5]. Only some studies have been carried out on glasses containing V_2O_5 and B_2O_3 . These glasses have potential applications in optical and electrical memory switching, as cathode materials for making solid devices and as optical fibre [6,7]. Boric oxide (B_2O_3) is a prominent glass former due to its extremely viscous melt which forms at much lower temperature. Beside that, B₂O₃ glasses are strongly tied in

http://dx.doi.org/10.1016/j.jascer.2014.11.006

2187-0764 © 2014 The Ceramic Society of Japan and the Korean Ceramic Society. Production and hosting by Elsevier B.V. All rights reserved.

^{*} Corresponding author. Tel.: +91 9890200041.

Peer review under responsibility of The Ceramic Society of Japan and the Korean Ceramic Society.

Fig. 1. XRD of $60V_2O_5 - (40 - x)P_2O_5 - xB_2O_3$ glass samples for (a) $x = 5 \mod \%$, (b) $x = 10 \mod \%$, (c) $x = 20 \mod \%$, (d) $x = 30 \mod \%$ and (e) $x = 35 \mod \%$ at room temperature.

melting, the mixture was poured out onto a nonmagnetic stainless steel plate so that the sample (Circular) had a thickness of nearly about 3 mm. To avoid internal strains, the sample was annealed at 200 °C for 1 h. For the electrical measurements, the samples were polished and conducting silver paste (electrode) was deposited on both sides of the samples for a radius of nearly about 3.5 mm.

The sample was characterized by using XRD and TG-DTA techniques. The XRD analysis was carried out at room temperature within $2\theta = 10-60^{\circ}$. The pattern was recorded with a step height of 0.02° and with scan rate 6.00. The TG-DTA was carried out under constant nitrogen flow with heating rate $12 ^{\circ}$ C/min.

The density of the glass samples was determined at room temperature through Archimedes principle, by using xylene. The density was estimated by using Eq. (1)

$$\rho = \left(\frac{W_{\rm a}}{W_{\rm a} - W_{\rm l}}\right) \times \rho_{\rm l} \tag{1}$$

where ρ is the density of the sample, W_a is the weight of the sample in air, W_l is the weight of the sample fully immersed in xylene and ρ_l is the density of the xylene.

The molar volume $V_{\rm m}$ was calculated from Eq. (2)

$$V_{\rm m} = \frac{M_{\rm T}}{\rho} \tag{2}$$

where $M_{\rm T}$ is the molecular weight of the glass.

The temperature dependence of AC conductivity (σ) and dielectric constant (ε') were measured using LCR meter, Agilent Technology, Singapore. The measurements were performed in a frequency region of 20 Hz to 1 MHz and a temperature range of 303–473 K. The electrical modulus was studied for all compositions.

3. Results and discussion

3.1. XRD analysis

Fig. 1 shows XRD pattern of all prepared glass samples. The absence of sharp Bragg's peak confirmed amorphous and homogeneous nature of glass samples. The broad hump observed in XRD pattern of all samples indicates lack of a long-range order.

Fig. 2. TG-DTA plot of 60V₂O₅-5P₂O₅-35B₂O₃ glass samples.

3.2. Thermal analysis

Fig. 2 shows thermal dehydration in $60V_2O_5-5P_2O_5-35B_2O_3$ samples. From TG, weight loss of 15% is in the temperature range of 30–200 °C which may be due to loss of water molecules. After this a steady loss in weight is observed till 300 °C, due to condensation of structural OH groups [3,10,11].

The DTA curve of 35 mol% of B_2O_3 glass sample consists of three endothermic peaks, which are attributed to the removal (evaporation) of water from the sample. A small endothermic change because of its second-order phase transition at around 230 °C may be assigned for the glass transition (Tg). The sharp exothermic peaks at around 275 °C may be due to the crystallization (Tc) of the glass [12,13].

At the same time the derivative of DTA (DDTA) is recorded and shown in Fig. 3. The temperature Tf₁ and Tf₂ endothermic and exothermic peaks can be exactly detected on DDTA curve from inflection points. The first-order reaction activation energy (E_a) is derived from Eq. (3) using Tf₁ and Tf₂ [3,7,14]. The endoactivation energy was found to be 17.3 ± 0.01 kJ/g-mol, whereas exo-activation energy was 55.1 ± 0.05 kJ/g-mol respectively, for 35 mol% of B₂O₃.

$$\frac{E_a}{R} \left(\frac{1}{\mathrm{Tf}_1} - \frac{1}{\mathrm{Tf}_2} \right) = 1.92 \tag{3}$$

Fig. 3. Simultaneous recorded DDTA curve of 60V₂O₅-5P₂O₅-35B₂O₃ glass samples.

Download English Version:

https://daneshyari.com/en/article/1473308

Download Persian Version:

https://daneshyari.com/article/1473308

Daneshyari.com