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a  b  s  t  r  a  c  t

A  micromechanical  approach  is set-up  to analyse  the  increase  in  elastic  stiffness  related  to  development
of  plastic  deformation  (the  elastoplastic  coupling  concept)  occurring  during  the compaction  of  a  ceramic
powder. Numerical  simulations  on cubic  (square  for 2D) and  hexagonal  packings  of  elastoplastic  cylin-
ders  and  spheres  validate  both  the  variation  of the  elastic  modulus  with  the  forming  pressure  and  the
linear  dependence  of  it on  the  relative  density  as experimentally  found  in  Part  I  of this  study,  while  the
dependence  of the Poisson’s  ratio  on  the  green’s  density  is  only  qualitatively  explained.
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1. Introduction

Densification of metal as well as ceramic powders is a prob-
lem connected with a strong industrial interest, so that the
micromechanics of this process has been the focus of a number
of investigations (almost all addressed to metal particles, while the
akin problem of ceramic powders has been much less investigated).
Grains have been usually assumed as spherical (or cylindrical for
simplicity), so that micromechanics explains how plasticity and
increase of contact areas between particles influence the overall
stress/strain behaviour. The analysis of this problem sheds light
on the macroscopic constitutive modelling of the powder, to be
employed in the design of moulds to form green pieces with desired
shape. The compaction problem is also of great academic interest in
several fields, including biomechanics, where it traces back to the
famous ‘Histoire Naturelle’ by the Count de Buffon, who  reports on
a (probably ‘thought’) experiment with peas:

Qu’on remplisse un vaisseau de pois, ou plutôt de quelqu’autre
graine cylindrique, et qu’on le ferme exactement après y avoir
versé autant d’eau [. . .]; qu’on fasse boullir cette eau, tous
ces cylindres deviendront des colonnes à six pans. On en voit
clairement la raison, qui est purament mécanique; chaque
graine, dont la figure est cylindrique, tend par son reflement
à occuper le plus d’espace possible dans un espace donné,
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elles deviennent donc toutes nécessairement hexagones par la
compression réciproque.

This is an example of compaction of a package of spheres (Fig. 1),
later continued by D’Arcy Thompson in his On Growth and Form and
others.

Micromechanical models of powder compaction have been
developed so far for a cubic (square in 2D) geometry of spheres
[1–4] or cylinders [5–8] in frictionless contact, and friction between
grains has also been considered for the latter geometry [5]. Random
packing of cylinders and spheres have been analyzed respectively in
[4,5]. All the above-mentioned investigations, in which the spheres
and the cylinders are modelled within the framework of the J2-
flow theory of plasticity with linear hardening or perfectly plastic
behaviour (Fig. 6), are all focused on the determination of the yield
surface at different stages of compaction.

The objective of the present article is to investigate how the
plastic deformation of grains during compaction influences the
macroscopic elastic response of the material, an aspect never con-
sidered before, but central in the development of elastoplastic
coupling (see Part I of this study). To this purpose, 2D (plane strain)
and 3D square/cubic and hexagonal packings of cylindrical and
spherical grains are considered (Fig. 3). Although detailed infor-
mation on the constitutive law valid for the grains is not available,
these are modelled via von Mises perfect or linear hardening plas-
ticity, which is typical of a basic and simple mechanical behaviour.
Representative volume elements of the cylinder and sphere pack-
ings are deformed to model the state of uniaxial strain achieved in
a cylindrical rigid die and the mean stress/mean strain behaviour is
numerically determined using the finite element program Abaqus
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Fig. 1. Examples of packaged spherical particles in nature (pomegranate seeds, left, photo taken with a Panasonic DMC-FZ5 digital camera) and in industry (an aluminum
silicate spray dried powder, right, photo kaken with a Nikon SMZ-800 optical microscope equipped with DSF1i camera head).

Fig. 2. A toy model to explain elastic stiffening due to plastic deformation. The elastic
circular cylinder of initial radius a0, height h0, and elastic modulus E is coaxial to the
unit cell of radius b0. Upon axial plastic deformation, the inner cylinder has a radius
a  and height h (a > a0 and h < h0). If the plastic strain is isochoric a2h = a2

0h0, so that
the new geometry will result elastically stiffer than the initial one.

Unified FEA®. Once the uniaxial strain compaction has been com-
pleted, the representative element is unloaded and reloaded under
uniaxial stress to evaluate the average Young modulus and Pois-
son’s ratio of the material. In this way it is possible to determine
the variation of the elastic modulus with the forming pressure and
the dependence of the elastic modulus on the density. These eval-
uations validate the experimental results presented in the Part I of
this study. The micromechanical evaluation of the Poisson’s ratio
is more complicated than that of the elastic modulus. In this case,
the results from micromechanics correctly explain the qualitative
increase of the Poisson’s ratio with the forming pressure, but the
values are not tight to experimental results.

The dependence of elastic stiffness on the level of plastic defor-
mation is a crucial aspect of elastoplastic modelling of geological
and granular materials, including ceramic, metal powders, and
greens. Results provided in the present article explain the plastic
micromechanisms inducing elastic stiffening during compaction of
ceramic powders.

2. A toy mechanical model to explain elastoplastic coupling

Before to set up the micromechanical model for the qualita-
tive and quantitative explanation of elastoplastic coupling, a simple
mechanical model is presented with the aim of providing a simple
explanation of the phenomenon. The model is intended only to shed
light on the mechanism of increase in elastic stiffness due to plastic
deformation and not to provide a quantitative evaluation.

Referring to an elastoplastic circular cylinder of initial height h0
and cross section of radius a0, this is inserted in a larger and coaxial

cylindrical unit cell with cross section of radius b0 > a0 (Fig. 2), so
that when the cylinder is subject to a force F (positive when tensile),
the nominal stress is �n = F/(�b2

0), while the effective stress is �e =
F/(�a2

0). Assuming that incompressible axial plastic deformation εp

has brought the cylinder to a new height h and radius a, isochoricity
implies a2 = h0a2

0/h = a2
0/(1 + εp). The axial plastic deformation εp

can be expressed in terms of void ratio as

εp = e − e0

1 + e0
, (1)

where e0 = (b2
0 − a2

0)/a2
0 is the initial void ratio and e = (b2

0 − a2)/a2

is the current void ratio.
If  the deformed cylinder is now loaded with a force F, the nom-

inal stress remains equal to �n (because the radius of the unit cell
does not change), but the deformation is εc = F/(E�a2), so that the
apparent elastic modulus defined as Ē  = �n/εc is

Ē(εp) = E
a2

b2
0

= E
a2

0

b2
0(1 + εp)

. (2)

Eq. (2) is not expected to realistically represent the variation in
elastic stiffness of a ceramic powder, but provides a simple model
to understand the elastoplastic coupling effect at the microscale. In
fact, for a compressive (and therefore negative) plastic deformation
εp, the apparent elastic modulus of the material Ē increases, as it
happens in a ceramic or metallic powder.

3. Micromechanical modelling

Square/cubic and hexagonal two-dimensional (grains are ide-
alized as cylinders) and three-dimensional (grains are idealized as
spheres) granule dispositions are considered as representative of
ceramic powders, Fig. 3. Although at a first glance these geome-
tries may  appear far from the reality, they are usually considered
to represent correctly the overall behaviour of granulates [1–8].
For the considered packagings, symmetry allows the reduction into
the primitive cells and the unit cells shown in Fig. 3. For 2D (a
quarter of a solid disk) and 3D (two eighths of a solid sphere) the
reduction is shown in Figs. 4 and 5, respectively. The grains are in
contact with smooth and rigid surfaces and all contacts between
grains (and hence with the rigid surfaces) are assumed to be
frictionless.

Reference is made to the ready-to-press commercial grade,
96% pure, alumina powder (392 Martoxid KMS-96), one of the
three investigated in Part I of this study. This powder has particles
of 170 �m mean diameter, obtained through spray-drying, and
possesses a high plastic formability, because particles are made up
of an aggregate of microcrystals with a polymeric binder. It is not
known which constitutive equation models the material behaviour
of the grains, except that it is an elastoplastic constitutive law. For
this reason, the simplest constitutive framework of plasticity is



Download English Version:

https://daneshyari.com/en/article/1473720

Download Persian Version:

https://daneshyari.com/article/1473720

Daneshyari.com

https://daneshyari.com/en/article/1473720
https://daneshyari.com/article/1473720
https://daneshyari.com

