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a  b  s  t  r  a  c  t

A  model  for  crack  propagation  along  a non-locally  pre-stressed  interface  in  ceramic  materials  is  studied.
The problem  is analysed  on  a discrete  chain  of oscillators,  with  local  and  non-local  interactions.  The
pre-stressed  state  is  defined  by  the  stiffnesses  of the non-local  links.  Small  negative  stiffnesses  of such
links  reveals  the  existence  of  crack  speeds  supporting  stable  crack  propagation,  which  is not  possible in
a  structure  which  has  only  local  interactions.
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1. Introduction

Ceramic materials possess certain superior properties, which
make them attractive for use in fields including structural engi-
neering, bioengineering, and aeronautics. However, these materials
have some weaknesses, especially brittleness, as a result of low
fracture toughness. These disadvantages may  be overcome by
several methods, including transformational toughening, fibrous
toughening [28]. The authors of [13] used FEM to study crack
toughening mechanisms (parallel arrays of cracks and crack kink-
ing due to plastic dissipation) for layered and particulate solids,
which may  be applicable to ceramic composites. Apart from being
used as monomaterials, ceramics have been extensively used in
complex structures and composites, where differing ceramic mate-
rials are joined together or with metals [22]. Notably, the superior
properties of ceramic-metal joints see them widely used in var-
ious structures and situations where monoceramic materials are
unsuitable. Also, since the fabrication of large ceramic structures
is a complex and expensive process, it can be advantageous to use
ceramics only for the parts which require their use.

There are several techniques used in joining ceramic to metal,
including various brazing methods [25] and pulsed laser depo-
sition [12]. Even though it is possible to produce a relatively
strong ceramic/metal interface using several techniques, residual
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stress concentrated near the ceramic-metal joints may significantly
decrease the life time and workability of the structure. The dis-
tribution of the residual stress presented in [14,20,21] reveals
clear evidence of a stress concentration close to the ceramic/metal
interface. This, in turn, may  lead to microcracks in these
regions, and their further propagation as a macro-crack along the
interface.

In the present paper, we analyse the properties of such interfaces
at the micro-level, where we use for this purpose a one-dimensional
discrete model, and consider stead-state crack propagation along
the interface. This analysis is based in considering a chain of oscil-
lators attached to a rigid surface with linear springs. The crack is
modeled as a lack of such support for half of the chain. The inter-
actions between the various oscillators are modeled by local linear
springs and next-nearest-neighbour interactions. Similar models
featuring non-local interactions were used to study phase tran-
sitions [23,24], and to perform numerical simulations of crack
propagation in structured media [3].

In our analysis, we  assume that the non-local interactions,
resulting from varying concentrations of different atoms along the
joint interface [12,14,20,21], are small in comparison with the local
interactions. In other words, in the model under consideration, we
study the effect of small values of the spring constant in compari-
son with the local stiffness. The recent paper [5] demonstrates the
effects that arise from non-local interactions. The authors show
that the anisotropy of the elastic structure may  lead to some unex-
pected effects, where the crack may  propagate at a lower speed in
comparison with similar discrete structures exhibiting only local
interactions.
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Fig. 1. Chain of oscillators with equal mass M,  connected to a substrate with springs
of  stiffness c1 (fat lines), closest neighbours with springs of stiffness c2 (normal
lines), and second closest neighbours with springs of stiffness c3 (red lines), where
n* represents the crack tip. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web  version of this article.)

In this paper, we are interested in a different effect. Specifically,
we assume small variations in the interface properties can exist in
combination with a constant average stiffness of the interface. In
detail, we consider small perturbations of the non-local stiffness,
taking both positive and negative values. The negative values of
stiffness are referred as ‘elements with negative stiffness’, where
there are several papers on this topic, e.g. [26,27,6]. These ‘nega-
tive stiffness elements’ may  be used to model mechanical systems
with stored energy, and the above mentioned papers reveal that
these elements may  effect the damping properties of the mechan-
ical system.

The solution of this problem is based on the ideas proposed
by Slepyan [19], which have been further developed in a num-
ber of publications, for example [8–11,15–18], with reference to
the local interactions occurring in various lattice structures. The
technical solution of the problem requires specific mathemati-
cal techniques, and is performed in [5]. In the present paper we
focus only on the consequences of the non-local interactions with
negative stiffness, demonstrating that such configurations may
lead to a considerable difference in the strength properties of the
interface.

2. Problem formulation

Let us consider a discrete model with nonlocal interactions, rep-
resented by a chain of masses, and analyze the crack propagation in
the structure (Fig. 1). The following notations are introduced: M is
the mass of a particle, c1 is the spring constant of the links between
the particles and a substrate, c2 is the stiffness of the bonds between
the closest neighbors, and c3 is the spring constant between the
second closest neighboring particles. We  suppose that the parti-
cles are evenly distributed, with a separation of length a, and that
the vertical springs also have the same equilibrium length. The
coordinate n*(t)a = vt represents the location of the crack tip, which
propagates with a constant speed v from left to right. We  study the
effect of introduced non-local interactions, i.e. the magnitude of c3
in comparison with c1 and c2.

The equations of motion for the mechanical system considered
take the form

M
d2un

dt2
=  c3(un+2 +  un−2 −  2un)  + c2(un+1 + un−1 −  2un)  −  c1un,

n  ≥  n∗,

M
d2un

dt2
=  c3(un+2 +  un−2 −  2un)  + c2(un+1 + un−1 −  2un),

n  <  n∗,

(1)

where un(t) is the horizontal displacement of the nth oscillator
from the equilibrium position. The following fracture criterion is
used:{

un∗ = uc,

un < uc, n > n∗,
(2)

where uc is a critical value of the displacement field at the crack
tip. The first equality allows us to find a threshold loading condi-
tion, which is determined in further analysis. We  note that a natural
choice for the criterion would be a critical magnitude of the absolute
value of displacement of the oscillator |un∗ | at the crack tip. Such
a condition, however, is not always consistent with the assump-
tion of steady-state crack propagation and we  refer the prospective
reader to the paper [11], where both criteria are considered and
discussed.

We assume throughout the paper that the crack propagates from
the left to the right with a constant speed v,

v < vc, v2
c = c2 + 4c3

M
a2, (3)

where vc is the sound speed in the broken part of the chain (n < n*).
Since we  are studying the effects of the material parameters, all
computations have been performed using the dimensionless values
of M,  cj. Let us fix the value of c2 + 4c3 for all the computations:

c2 + 4c3 = 1. (4)

This linear combination of c2 and c3 represents the effective stiff-
ness, which tends to some macroscopic stiffness in the limit a → 0.
For all further examples, we  let M = 1. In order to track the relevance
of low levels non-local interaction we  set:

|c3| <
1

12
. (5)

The problem considered corresponds to a mode III fracture. The
authors of [8] solved a similar problem, within a different physical
context that is suitable for the analysis of mode II fracture.

3. Energy release rate and displacement profile ahead of
the crack front

The details for the full solution can be found in [5]. Here, we
proceed directly to the numerical results, and will concentrate
solely on the computation of the most decisive parameter in frac-
ture mechanics, the Energy Release Rate (ERR).

We describe the first equation from (2) as the deformation frac-
ture criterion for damage to the nearest spring to the crack tip.
Following [16], we numerically evaluate the dependence of the
energy ratio G0/G on the associated crack speed. We  here use G
to denote the global energy release rate enforcing the crack propa-
gation, while G0 is the local energy release rate determined by the
critical value of uc and the stiffness of the broken link c1. We  see that
the ratio G0/G is independent of the value uc [16]. In the discrete
structure dynamic, crack propagation is qualitatively different to
the propagation seen in continuous media. Indeed, as was  shown
in [19], the global ERR, G, can be expressed as a sum of the fracture
energy G0 and the energy carried by the elastic waves that radi-
ate from the crack tip. Consequently, as the ratio G0/G decreases,
more energy is released from the crack tip by those elastic waves
in the course of fracturing. Thus, only part of the global energy is
consumed by the fracture itself (G0 < G).

The plots of the energy release ratio G0/G are shown in Fig. 2,
for different values of the parameters c1, c2, c3. In the numerical
simulation we used c1 = 0.5, 1, 2 and c3 = 1/16, 0, − 1/32, − 1/16,
while the value of c2 was  determined according to Eq. (4). In the
case c1 = 1, the displacement profile calculations were performed
for two  choices of crack speed, v = 0.5vc and v = 0.2vc , in Fig. 3(a
and b), respectively, while Fig. 3(c) provides an enlarged view of the
profiles near the crack tip in the case of v = 0.2vc . The plots show
the dependence u(�)/uc, where

� = n − vt. (6)
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