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a  b  s  t  r  a  c  t

Ceramics  that  are  composed  of layers  have  attracted  attention  because  they  are  expected  to improve  the
ductility.  In  this  study,  we  construct  a  practical  model  of  layered  ceramics  to deal with  both  interlayer  slip
and delamination.  The  deformation  modes  and  mechanical  properties  under  compression  force  parallel
to the  tangential  direction  of  the  layers  are examined  using  the  particle  dynamics  method.  The  effects
of  the  stiffness  of  in-layer  bending,  the  strength  of  the  interlayer  bond,  and  the  stiffness  of  the  elastic
support  associated  with  the surrounding  materials  are  studied  in  detail,  as well  as  the  effect  of  strain
rate.  It is  shown  that  these  parameters  have  something  to do  with  the  criteria  of  kink deformation  and
the  successive  deformation  mode.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The development of materials that realize simultaneous
increases of ductility and strength is an important topic. Con-
ventional ceramic materials are strong in hardness and weak in
brittleness with loading [1,2], whereas metals and metal alloys usu-
ally show excellent mechanical properties in ductility. Meanwhile,
novel ceramics, denoted as “MAX phases,” have attracted atten-
tion since the discovery of their superior mechanical properties.
The properties of Mn+1AXn phases (“MAX phases,” where n = 1, 2,
or 3) [3–5] bridge the gap between those of typical metals and those
of ceramics [6–8]. The materials have a multilayer microstructure
and show some ductility for compression loads with the help of a
combination of delamination and kink-band formation. The unique
mechanical properties [9] of MAX  phases are closely related to kink
deformation processes [10–15]. For example, the reversible hys-
teresis in MAX  phases caused by the formation, kink bands and so
on has been examined [16].

In a broad sense, kink deformation in layered solids is an inelas-
tic deformation in which a laminated surface is bent out of plane
with geometrical nonlocality and nonlinearity. The deformation
occurs under compression force in the direction parallel to the lay-
ers, and it is commonly observed in layered solids beyond scales
such as basal slip in hexagonal close-packed metals and stratum
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deformation on a geological scale [17]. The deformation mecha-
nism has been investigated in the classical literature, e.g., [18], and
it is considered essential from the viewpoint of improving mechan-
ical properties and realizing novel functionality. One reason for the
generation of kink deformation in materials is crack growth, and
experimental observation and theoretical analysis of fracture prop-
erties have been reported [19–21]. The geological analysis of kink
banding [22] and the instability of materials which is similar with
kink deformation have been explained [23]. The geometrical prop-
erties of orthokinks [24,25] and ridge-shaped kink structures [26]
have been studied in metals.

Delamination is another important deformation mechanism in
layered solids. Both kink deformation and delamination are com-
monly observed in some multilayered solids that usually show
strong anisotropy due to the different structures along the transver-
sal and stacking directions, respectively. However, such anisotropy
sometimes yields surprising deformation characteristics in geo-
metrically nonlinear deformation. Kink deformation could realize
not only the improvement of deformability but also the strengthen-
ing. According to damage mechanics and fracture mechanics, the
strength of materials is usually degraded by delamination. How-
ever, microcracking, which is related to the relaxation process of
strain energy, may  improve the toughness.

In this study, the microdynamic simulation of compression par-
allel to basal planes in MAX-phase ceramics is carried out using a
spring–mass model based on our previous work [27]. By consider-
ing the geometrical nonlinearity of deformation, kink deformation
and delamination are related to lattice rotation and debonding,
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Fig. 1. Analysis model of layered solid with spring–mass model.

respectively. According to the parametric studies with stiffness of
interlayer bonds and elastic support, the relationships between
force–displacement curves and deformation are discussed in detail.
The deformation process is related to energy release, and we expect
to obtain knowledge for the improvement of toughness in the
design of materials with layered microstructures.

2. Computational model

2.1. Equation of motion of the particle system

The deformation modes and mechanical properties under com-
pression force parallel to the tangential direction of the layers are
examined using the particle dynamics method.

A rectangular specimen of layered ceramics in an elastic matrix
is discretized by particles with translational degrees of freedom
and analyzed by the spring–mass model, as shown in Fig. 1(a). The
interaction of particles is defined by a force field as a function of
the configuration, which is shown in Fig. 1(b). The total number
of laminating layers is L, and the lth layer (l = 1, 2, . . .,  L) contains
n(l) particles arranged in the direction of x1 in the initial stage. The
particle �(l, i) denotes the ith particle in the lth layer, and the particle

 ̨ belongs to the lamination layer, expressed by �(˛), where l = �(�(l,
i)) holds for any ith particle in the lth layer.

We assume a single-component material and every particle is
identical. The mass of particle ˛(  ̨ = 1, . . .,  N) and coordinates at
time t are m.

For the simplicity, a two-dimensional model is assumed, and
the equation of motion of the coordinates x[˛](t) = (x[˛]

1 (t), x[˛]
2 (t))

of particle  ̨ is given as

m
d2x[˛]

dt2
= F [˛], (  ̨ = 1, . . .,  N), (1)

where F[˛] is the force applied to particle ˛.

2.2. Force field

The force applied to a particle  ̨ is F[˛] = − ∂�/∂x[˛], where the
potential � is assumed to be expressed by

� = �bond + �angle + �interlayer, (2)

where �bond, �angle and �interlayer are the potentials.
The relative position vector of particle  ̌ referred by  ̨ is

r[˛,ˇ] = x[ˇ] − x[˛], and the distance between these two particles is
r[˛,ˇ] = |r[˛,ˇ]|. The angle between bonds ˛-  ̌ and ˇ-� are given as

�[˛,ˇ,�] = cos−1

(
(r[˛,ˇ], r[ˇ,�])

r[˛,ˇ]r[ˇ,�]

)
, (3)

The potential energy of the neighboring bond in the same layer
�bond is defined by

�bond =
L∑

l=1

n(L)−1∑
i=1

�harmonic(r[�(l,i),�(l,i+1)]). (4)

The harmonic potential �harmonic is

�harmonic(r) = Cpair(r − r′
0)2, (5)

where Cpair denotes the spring constant, r is the distance between
particles, and r′

0 denotes a reference length.
The potential energy depending on the angle between bonds in

the same layer is

�angle =
L∑

l=1

n(L)−2∑
i=1

�angle(�[�(l,i),�(l,i+1),�(l,i+2)]), (6)

where the potential �angle(�) is a function of the angles between
two bonds, �.

�angle(�) =
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(7)

where C� is the spring constant.
The function �angle(�), which consists of a monotonically

increasing part, (0 < |�| < 1
3 ), and a plateau part, (|�| ≥ 1

3 ), simu-
lates a typical grain boundary energy as a function of misorientation
angle. The first derivative, �′

angle(�), is continuous and smooth, and

the second derivative, �
′′
angle(�), is continuous. These features not

only have good physical interpretation, they also satisfy the pre-
requisite for computational calculations.

The potential energy of the interlayer’s interaction, �interlayer, is
given by

�interlayer =
N∑

 ̨ = 1

�(ˇ) /= �(˛)

N∑
 ̌ = 1

 ̌ /= ˛

R�Morse(r[˛,ˇ]), (8)

where the factor R is a parameter and the Morse potential, �Morse,
between particles is defined by

�Morse(r) = D{exp(−2˛(r − r0)) − 2 exp(−˛(r − r0))}, (9)

where D is a constant related to the binding energy, r0 is a reference
length, and  ̨ is a nondimensional parameter. A cut-off function is
used for r1 < r < rc with fixed r1 and rc.

Generally speaking, when the cut-off radius is large, the
deformation is more strongly affected by the reference lattice con-
figuration. Because we  want to simulate some universal features of
deformation which do not depend on the lattice structure, we  use
a short-range potential in this study.
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