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a  b  s  t  r  a  c  t

In  this  paper  the densification  of  ceramics  under  flash  sintering  is  modelled  using an  approach  based  on
the  heat  equation  coupled  with  a apparent  activation  energy  kinetic  equation  for  densification,  leading  to
a system  of  nonlinear  differential  equations.  Methods  to  analyse  the  system  either  by  numerical  solutions
or via  bifurcation  theory  are  presented.  Measurements  needed  to estimate  sintering  kinetic  parameters
are  executed.  The  model  shown  explains  the two main  features  of  flash  sintering:  A characteristic  elec-
trical  field  threshold  independent  on  the  temperature,  and  an  incubation  time  to  flash  sintering.  The
results are in  agreement  with  experimental  results  obtained  for  Yttria  Stabilzed  Zirconia  and  for  nano-
sized  BaTiO3.  It confirms  that  the  critical  condition  for the Flash  phenomenon  is rather  the  temperature
dependent  resistivity  than  the  sintering  kinetics.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Flash sintering is a recently developed method [1–8] in which
ceramics can be sintered at low temperatures in a short time. It is
a non-linear phenomenon, characterized by a sharp increase of the
conductivity of the sample and simultaneous rapid densification
under an electric field above a threshold temperature in a few of
seconds. It has many interesting characteristics, including a critical
electrical field strength for which the phenomenon is observed [1],
and a certain incubation time [9] in which the electrical field should
be maintained while the current increases nonlinearly.

The main mechanisms of flash sintering are still not well under-
stood. Most of the first explanations are related to a sintering
process activated via Joule heating [9] or local melting at the grain
boundaries [10], but recent results and discussions have led to con-
clusions indicating that the temperatures obtained during flash
sintering could not be high enough to explain thereby the densifi-
cation behavior [6,7,11]. New mechanisms, such as the nucleation
of defects embryos under the effect of polarization by the field,
have been proposed to account for both, the higher conductivity
and self-diffusion (sintering) observed [12].

Todd et al. [13] have used the thermal runaway concept to
explain the nonlinear behaviour in the “flashing” of dense samples.
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Their description of the phenomena is closely related to the heat
equation described in this work, although not taking densification
directly into account.

Zhang et al. [14] have also developed a thermal runaway crite-
rion to explain flash sintering. The criterion is based on comparing
the rates of joule heating with dissipation. It can predict the onset
of the non-linear behaviour, but it does not make any distinction
whether a steady state at a higher temperature without electric
current control can be reached or not, such as observed for low
electrical fields [6].

Most of our work was inspired by the treatment given to
the thermistor problem in power surges [15] and by the sta-
bility analysis used to avoid explosions in chemical reactors
[16,17], since it involves the critical conditions for thermal
runaway and a critical non-linear behaviour after a threshold
condition.

The present paper starts by stating the model formulation and
assumptions. Then, it does a simplified analytical treatment of the
theory presented using the concepts of stability and bifurcation.
Measurements needed to estimate the sintering kinetics are made,
and finally the numerical treatment of the complete equations is
presented.

2. Model formulation and assumptions

In order to model the sintering process, all the sintering
driving forces such as surface energy and species diffusion
are lumped together in a phenomenological equation, where
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densification depends on the instant density, and gets slower at
higher densifications. It does not take into account neck formation
(stage I of sintering), since this does not lead to densification. This
approach emulates most of the sintering in the second phase and
the beginning of the third phase of sintering, where most of the
densification occurs. It also depends on the temperature by a factor
independent on the density (�):

d�

dt
=

(
1 − �

�d

)
G(T) (1)

where G(T) is an empirical kinetic smooth function (see below)
which increases with increasing temperature, based on the increase
of activated diffusivity as a function of temperature. �d is the theo-
retical material density. Similar formulae were already used for the
modelling of Electric Discharge Sintering [18].

The temperature evolution during flash sintering, not taking into
account spatial distributions of temperature, is a balance between
the heat generation by Joule heating and the heat losses, either by
convection or radiation:

V�C
dT

dt
= VEj − L(T) (2)

where E is the applied electrical field strength, j is the current den-
sity flowing through the sample, C is the thermal capacity, V is the
volume of the sample and L(T) is a smooth function only dependent
on T, increasing with increasing temperature. They can be func-
tions of the order of T in the case of convection or T4 in the case of
radiation cooling. They are the limiting bounds for slow and rapid
heating, respectively.

It is worth noting that the sample’s dimensions will change dur-
ing the process due to densification. This also leads to a change
in the instant current density and electrical field strength. Since
an lumped temperature analysis is used, this shrinkage is mod-
elled using the following expressions for volume, area and length
dimensions, respectively:
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(
�0

�

)
(3)
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)2/3
(4)

l = l0

(
�0

�

)1/3
(5)

where the subscript 0 relates to the dimensions and density of
the green body before sintering. All the instances of geometrical
constants, current density and electrical field in the remainder of
this article are corrected using Eqs. (3)–(5).

In order to be able to determine a relationship between voltage
and current, an Arrhenius-like relationship is used to model the
resistance (R) dependence on the temperature. Data from Todd et al.
[13] already shows this NTC (Negative Temperature Coefficient)
behaviour in zirconia at high temperatures:

R = R0e
�E
kT

l

Ac
(6)

where l is the distance between electrodes, Ac is the sample
cross-section, R0 is the preexponential resistivity factor, �E  is the
resistivity activation energy and k is the Boltzmann constant.

Applying Ohm’s Law and taking into account a linear relation-
ship between density (�) and resistivity:

E
�

�d
= Rj (7)

It is assumed that the resistance on the sample is linearly
dependent on the cross-sectional area available for conduction and
consequently, in the situation where the green body has a low

densification, there will be a higher current density in a smaller
inter-particle contact area.

Differentiation of (7) as a function of time leads to:
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dt
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dt
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dt
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Which in turn, leads to the following relationships for the con-
stant voltage regime (9) and the constant current regime (10)
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Differentiating (6) leads to:

dR

dt
= −R0e
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kT

l�E

AckT2
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dt
(11)

Substituting (1), (11) and (6) in (9):
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From (6) and (7), it is possible to express the specimen temper-
ature, due to furnace and Joule heating as a function of the current
and electrical field:

Tj = �E

k ln(E�Ac/jR0l�d)
(13)

Using the same procedure as in (12) for the constant current
regime:
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Now the main challenge is to find suitable functions for L(T)
and G(T). For the sintering temperature rate function, G(T), this
work is based on the Master Sintering Curve concept [19], where
the sintering kinetics can be lumped, considering that only one
mechanism is responsible for most of the densification, and in that
case it is possible to use a simple Arrhenius type function with an
apparent activation energy H, using the same form used for the
resistance relationship (15). Dilatometry experiments at different
heating rates (Section 6.1) were made in order to observe if the sin-
tering behaviour of the zirconia powder used fits the relationship,
and to determine the values of H and the preexponential factor G0:

G(T) = G0e− H
kT (15)

For the heat loss function, L(T), two limiting cases can be studied:
convection (16) and radiation (17)

L(T) = hAt(T − T0) (16)

L(T) = ��At(T4 − T4
0 ) (17)

where, T0 is the furnace temperature, h is the convection heat
transfer coefficient, At is the surface area of the sample, � is the
Stefan–Boltzmann constant and � is the emissivity of the material.

3. Stability of nonlinear systems

Stability analysis is a widely known method to understand the
behaviour of a system of nonlinear differential equations [20]. It
has many applications in the chemical industry [16,17], where the
design of reactors of exothermic reactions is critical to avoid unsta-
ble operation points which can lead to explosions caused by the
feedback loop of increasing heating and, therefore, rate of reaction.

The method is based on two  main concepts: finding the station-
ary points of the system of differential equations and analysing the
eigenvalues and eigenvectors related to those stationary points. In
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