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Abstract

This paper presents a full-field solution for the linear elasto-static problem of a homogeneous infinite Kirchhoff plate with a semi-infinite rectilinear
crack resting on a two-parameter elastic foundation. The same model describes the problem of a plate equi-biaxially loaded in its mid-plane by
a constant normal force and, as a limiting case, the problem of a spherical shell. The full-field solution is obtained in closed form through the
Wiener–Hopf method in terms of Fourier integrals. The stress-intensity factor (SIF) for the case of symmetric (K1) and skew-symmetric (K2)
loading conditions is obtained and the role of the soil parameters is discussed. In particular, it is shown that a purely local model (Winkler) is
unable to provide a safe-proof design limit.
© 2013 Elsevier Ltd. All rights reserved.
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1.  Introduction

Fracture mechanics in linear elasticity has drawn extensive
attention since the pioneering works by Griffith in the mid 1950s
and it has been a hot research topic ever since. There is a vast
body of literature on the subject, which spans from elasto-static
to elasto-dynamics, from atomistic to multi-scale approaches,
from reduced dimensional to 3-D theories. The reason for such
enthusiasm lies in the great scientific and industrial potential for
effective structural  integrity  assessment, as a mean of determin-
ing the fitness-for-service (FFS) of a structure/material, either
at manufacturing, at purchase, during or at the end of service
life. This drive has prompted governments and scientific insti-
tutions towards developing reliable, cost-effective and unified
protocols of integrity assessment with maximum applicability
across all scales of final users, such as the EU-partly funded
Structural INTegrity Assessment Procedure (SINTAP) and the
Fitness-for-Service Network (FITNET).15 A major role in such
protocols, which have inspired and informed world-wide regu-
lations such as British Standard BS 7910 and API RP 579, is
played by the knowledge of the stress intensity factor K  (SIF)
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for the geometry and loading condition at hand. Indeed, the fail-
ure of cracked components is governed by the stresses in the
neighbouring of the crack tip, which is described by the SIF.
Despite the availability of several handbooks for SIFs,10,9 very
few full-field solutions are available for cracked plates resting
on an elastic foundation. To the authors’ best knownledge, they
are in fact just two. 1,2 This lack of results is problematic, since
this situation often occur in practice (e.g. roadways, pavements,
floorings, etc.). Furthermore, when some results are available,
they never involve the foundation’s mechanical properties alone.
For instance, in Ref. 2 the problem of a finite crack in an infinite
Kirchhoff plate supported by a Winkler foundation is considered
and it is reduced to a singular integral equation. However, since
two length scales exist in the problem (the crack length and the
foundation relative Winkler modulus), the SIF may be related to
some dimensionless ratio of them and not directly to the founda-
tion’s mechanical property. In actual facts, this outcome stems
from the Winkler approximation to the foundation and not from
the physical feature of the problem. In Ref. 1, the semi-infinite
rectilinear crack problem for an infinite Kirchhoff plate resting
on a Winkler foundation is considered and the full-field solution
obtained. Since this is a self-similar problem, no characteris-
tic length scale exists. Application of the above results is given
to road and airport pavements in Ref. 5 and, more recently, in
Ref. 7. As a result, the influence of the pavement foundation
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Fig. 1. Cracked Kirchhoff plate resting on a Pasternak-type elastic foundation.

on the SIF cannot be properly assessed. Several papers address
crack problems in plate theory. 4,11,13,3 A literature review of the
asymptotic behavior of the stress field at the crack tip is given in
Ref. 14 along with comparison with the available experimental
results.

This paper deals with the elasto-static semi-infinite rectilin-
ear crack problem for an infinite Kirchhoff plate resting on
a two-parameter elastic foundation under very general load-
ing conditions. The foundation, also termed Pasternak-type, is
weakly non-local, as it accommodates for coupling among the
independent springs of a purely local model (i.e. Winkler model).
The same model governs the problem of a Kirchhoff plate equi-
biaxially loaded in its mid-plane. The Pasternak foundation
accounts for two length scales such that the whole problem is
governed by a parameter η  expressing the soil to plate relative
stiffness. Discussion is here limited to the range η  ∈  (0, 1). The
limiting case as η  →  0 gives the Winkler model. The paper is
organized as follows. Section 2 presents the problem which is
then formulated in terms of a pair of dual integral equations. The
latter is solved at Section 3 through the Wiener–Hopf (W–H)
technique. Numerical results are given at Section 4 where SIFs
are obtained and some conclusions drawn. Finally, the details
of the W–H the factorization are presented in the Appendix at
the end of the paper. A similar approach has been considered
for Mode III crack problems in couple stress elastic materials
(Refs. 6,16-18).

2.  Governing  equations

Let us consider a Kirchhoff infinite plate supported by a
Pasternak-type two parameter elastic foundation (Fig. 1). A
Cartesian reference frame is attached to the crack tip so thus
the crack is located along the negative part of the x-axis. The
governing equation for the transverse displacement of the plate
w reads

D��w  =  q −  π, (1)

being �  = ∂xx + ∂yy, the Laplace operator in two dimensions; q,
the transverse distributed load; D, the plate bending stiffness and
π, the soil reaction. For a Pasternak-type foundation, the latter
is given by

π  =  kw  −  c�w,  (2)

wherein k and c are the Winkler and the Pasternak moduli,
respectively. Eqs. (1) and (2) may be rewritten as

��w  − 2

χ2 �w  + 1

λ4 w  = q

D
,  (3)

having let the length scales

λ  = 4

√
D

k
,  χ  =

√
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c
.

Let the dimensionless quantities be introduced

(x̂,  ŷ, ŵ) =  (x/λ,  y/λ,  w/λ),

together with the positive dimensionless ratio

η  =  λ/χ  =
√

c

2
√

kD
.

Eq. (3) is now formally factored in terms of the dimensionless
Laplacian �̂ = ∂x̂x̂ +  ∂ŷŷ(
�̂ +  α2

)  (
�̂ +  β2

)
ŵ = q̂ =  λ3q/D,  (4)

wherein

α2 =  −(η2 −
√

η4 −  1), β2 =  −(η2 +
√

η4 −  1).

Hereinafter, z* denotes the complex conjugated of z. Let us
assume, for the sake of definiteness, η < 1, that is c <  2

√
kD.

Besides, let α and β  to be placed in the upper complex half
plane (Fig. 3), i.e.

α

β

}
= ±

√
1 −  η2

2
+ i

√
1 +  η2

2
,  (5)

being i2 = −1. It is observed that

β  =  −α∗ and  |α|  =  1.  (6)

Hereinafter, only dimensionless quantities will be considered
and the hat dropped to lighten notation. Accommodating for
boundedness at y→  ∞, the general solution of the homogeneous
ODE (4) reads

w  =  w1 +  w2,  (7)

where

w1(x,  y±) =
∫

γ

A±
1 exp

(
−
√

s2 −  α2|y±| +  isx
)

d s

and

w2(x,  y±) =
∫

γ

A±
2 exp

(
−
√

s2 −  β2|y±|  +  isx
)

d s.

The integration path γ  lies in the complex plane and it is yet to be
defined (see Section 3) while the square root is taken with posi-
tive real part. It is understood that y+ ∈ [0, + ∞) and y− ∈  (−  ∞  ,
0], whereas A±

1 , A±
2 are four functions of s  to be determined.

Such functional dependence will be tacitly assumed throughout
this section. Let A±

i split in a symmetric and skew-symmetric
part

A±
i =  Ai ±  �Ai, i =  1,  2,  (8)

where Ai and �Ai are likewise functions of s. Let the (dimen-
sionless) bending moment and equivalent shearing force

my =  − (∂yy +  ν∂xx

)
w, vy =  −∂y

[
∂yy +  (2 −  ν)∂xx

]
w



Download English Version:

https://daneshyari.com/en/article/1473944

Download Persian Version:

https://daneshyari.com/article/1473944

Daneshyari.com

https://daneshyari.com/en/article/1473944
https://daneshyari.com/article/1473944
https://daneshyari.com

