

Journal of the European Ceramic Society 32 (2012) 1413–1417

www.elsevier.com/locate/jeurceramsoc

Fabrication of Si₃N₄-based composite containing needle-like TiN synthesized using NH₃ nitridation of TiO₂ nanofiber

Hajime Kiyono ^{a,*}, Yuho Miyake ^a, Yusuke Nihei ^a, Tomoki Tumura ^b, Shiro Shimada ^a

^a Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628, Japan
 ^b Faculty of Engineering, Oita University, Dannoharu, Oita 870-1192, Japan

Available online 4 May 2011

Abstract

A Si₃N₄ composite containing needle-like TiN particles (7 vol%) was fabricated. Needle-like TiN particles several micrometers long were synthesized using NH₃ nitridation of TiO₂ nanofiber, which was obtained using hydrothermal treatment. A mixed powder of α -Si₃N₄ and the needle-like TiN particles with additives was hot pressed at 24 MPa and 1850 °C for 1 h in N₂ atmosphere. Mechanical properties of the composite were compared with those of a composite containing rounded TiN particles and a monolithic β -Si₃N₄ ceramic. The Si₃N₄ matrix of the composites containing TiN was mainly a-phase, suggesting that the α - β phase transformation of Si₃N₄ was inhibited by the presence of TiN. Although fracture strength of the composites was lower, fracture toughness was comparable to that of monolithic β -Si₃N₄ ceramics. Hardness of the composites was about 19 GPa and was greater than that of the monolithic β -Si₃N₄ ceramic. © 2011 Elsevier Ltd. All rights reserved.

Keywords: Composite; Titanium nitride; Silicon nitride; Needle; Nanofiber; Hot pressing

1. Introduction

TiN is a promising material for coatings or additives in composites because of its high hardness characteristic, high fracture toughness, good abrasive resistance, good adhesive properties, and high electron conductivity. Fabrication of TiN-Si₃N₄ composites has been reported to give electric conductivity or to improve fracture toughness. ^{1–4} In these reports, the size of TiN particles has been controlled to the micrometer^{2,3} or nanometer⁴ range but the shape has not been intentionally controlled. It is well known that introducing needle-like grains into a ceramic body improves fracture toughness by virtue of a deflection and bridging effect against a crack propagating. Fibers or whiskers of TiN have been synthesized using methods, such as chemical vapor deposition,⁵ nitridation of TiO₂ fibers,⁶ and carbothermal reduction of TiO₂ with additions. This known that TiO₂ is easily nitrided to TiN using NH₃ atmosphere at elevated temperatures according to the following reaction:

$$2\text{TiO}_2 + 2\text{NH}_3 \rightarrow 2\text{TiN} + 3\text{H}_2\text{O} + 1/2\text{O}_2.$$
 (1)

 ${
m TiO_2}$ nanofibers with large specific surface area can be obtained by using the hydrothermal treatment of ${
m TiO_2}$ powder in a basic solution. ^{8,9} The authors have recently demonstrated that partially nitrided nanofiber has high rate charge-discharge properties can be used as an electrode material for lithium ion batteries. ¹⁰ In the study, we found that the nitrided nanofiber possesses a needle-like shape several $\mu m \log m$, which originates from the nanofiber. However, nitridation conditions and other applications of the nitrided nanofiber have not been investigated. In the present paper, we investigate the nitridation conditions necessary to synthesize needle-like TiN particles by the nitridation of ${
m TiO_2}$ nanofibers and fabricate ${
m Si_3N_4}$ -based composites containing the needle-like TiN particles.

2. Experimental procedures

2.1. Synthesis of needle-like TiN particles

TiO₂ nanofibers were synthesized by hydrothermal treatment of TiO₂ powder 8,11 using rutile TiO₂ powder (CR-EL, 0.3 μm; Ishihara Industry Co., Japan). The dispersion of 10 wt% TiO₂ powder in 47 wt% KOH and 43 wt% H₂O was heated at 150 °C for 150 h in a stainless jacket lined with TEFLON. The powder was then washed with 0.1 mol/L HCl solution to remove

^{*} Corresponding author. Tel.: +81 11 706 6578; fax: +81 11 706 6578. E-mail address: kiyono@eng.hokudai.ac.jp (H. Kiyono).

potassium and dried. To determine the nitridation conditions needed to transform TiO₂ nanofibers to TiN, thermogravimetric analysis (TGA) in NH₃/Ar atmosphere was carried out. Details of the TGA equipment are described elsewhere. ¹² About 50 mg of the TiO₂ nanofibers was heated to 1200 °C at 5 °C/min in NH₃/Ar (50/50 kPa). The weight loss during heating was monitored by an electric balance (Cahn D-200, USA). Nitridation was also carried out using a horizontal tube furnace using the same conditions as that of TGA except for the amount of the sample, which was about 0.5 g. The heat-treated samples were then subjected to X-ray diffraction (XRD, RIGAKU RINT, Japan) analysis, transmission electron microscopic (TEM, JEOL JEM-2000FX, Japan) observation, and X-ray photo electron spectroscopic (XPS, SHIMADZU ESCA-750, Japan) analysis.

2.2. Fabrication and characterization of composites

α-Si₃N₄ (SN-E10, Ube industry Co., Japan), Y₂O₃ (Koujyundo Chemical Co., Japan), and Al₂O₃ (Kanto Chemical Co., Japan) powders were used. The powders of α -Si₃N₄ with 5 wt% Y₂O₃ and 5 wt% Al₂O₃ were mixed using a ball mill containing plastic-coated iron balls in ethanol. After the 24 h ball milling, a dispersion of the TiO₂ nanofibers in water was added to the mixed powder of α -Si₃N₄ with Y₂O₃ and Al₂O₃ in ethanol and was mixed for 1 h. The amount of added TiO₂ nanofiber corresponds to 7 vol% TiN in the fabricated composites. The mixed powder was dried and heated using a horizontal tube furnace in NH₃ atmosphere at 1000 °C for 4h to transform TiO₂ to TiN without the nitridation of Al₂O₃ and Y₂O₃. The heated powder was hot pressed under a uniaxial pressure of 24 MPa at 1850 °C for 1 h in N₂ atmosphere (Composite A). For comparison, a TiN-Si₃N₄ composite having the same composition as that of Composite A, but with TiN fabricated from TiO₂ (CR-EL) powder without hydrothermal treatment, (Composite B) and a monolithic Si₃N₄ ceramic were fabricated. Hot pressing conditions for Composite B and the monolithic Si₃N₄ were the same as those of Composite A. The composites and monolithic Si₃N₄ were characterized by XRD and scanning electron microscope (SEM, JEOL JSM-6300F, Japan). Fracture strength was determined using a four-point bending test with a crosshead speed of 0.05 mm/min. Fracture toughness and hardness were measured using Vickers indentation method at an applied pressure of 195 and 49 N, respectively.

3. Results and discussion

3.1. Nitridation of TiO₂ nanofibers

Fig. 1 shows non-isothermal TGA curves of as-received TiO₂ powder (CR-EL) and TiO₂ nanofibers in NH₃/Ar (50/50 kPa). The weight of the as-received TiO₂ powder started to decrease from about 720 °C but the slope of the weight loss curve decreased at 870 °C. At about 1100 °C, the weight loss stopped at about 21%, which was close to the theoretical weight loss of 22.5% based on Eq. (1). Using XRD analysis, it was found that the sample was transformed to TiN after the TGA. Based on the results of TGA and XRD analysis, nitridation of as-

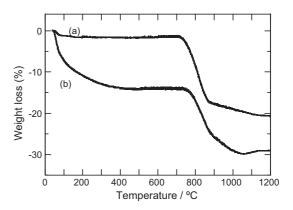


Fig. 1. TGA results of (a) as-received TiO2 and (b) TiO2 nanofibers in NH3/Ar (50/50 kPa) atmosphere with a heating rate of 5 $^{\circ}$ C/min.

received TiO₂ powder started at $720\,^{\circ}$ C and the powder was completely nitrided at $1100\,^{\circ}$ C in NH₃/Ar atmosphere. However, the weight of TiO₂ nanofibers started to decrease at room temperature, reaching a plateau at temperatures between 400 and $720\,^{\circ}$ C. After the plateau, the weight decreased again to 30% at $1030\,^{\circ}$ C, showing no significant change above that temperature.

XRD patterns of the TiO_2 nanofibers heated to various temperatures using the horizontal tube furnace are shown in Fig. 2. The original pattern of TiO_2 nanofibers showed small and broad peaks corresponding to those of $H_2Ti_3O_7$. The sample heated to $800\,^{\circ}C$ showed definitive peaks of anatase, indicating that the original TiO_2 nanofibers were dehydrated and crystallized. The TGA analysis showed that the first weight loss was about 20%, which was less than the estimated value of 7.0%, calculated from the equation:

$$H_2Ti_3O_7 \rightarrow 3TiO_2 + H_2O.$$
 (2)

The observed greater weight loss suggests that the nanofibers contained a large amount of physically adsorbed H_2O or the presence of hydrated species other than $H_2Ti_3O_7$. The XRD pattern of the sample heated up to $900\,^{\circ}C$ showed small peaks of rutile

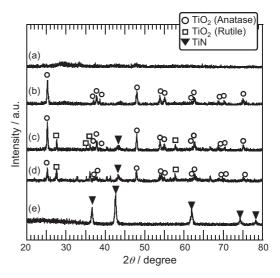


Fig. 2. XRD patterns of (a) as-synthesized TiO₂ nanofibers and ones heated at (b) $800\,^{\circ}$ C, (c) $900\,^{\circ}$ C, and (d) $1000\,^{\circ}$ C with no holding time and (e) at $1000\,^{\circ}$ C for 1 h in NH₃/Ar (50/50 kPa).

Download English Version:

https://daneshyari.com/en/article/1474040

Download Persian Version:

https://daneshyari.com/article/1474040

Daneshyari.com