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� Trace phosphate removal was
realized by HFO-based
nanocomposite.
� RSM and ANN model was developed

to model phosphate removal.
� Four variables of temperature, pH,

sulfate and solid dosage was involved.
� Genetic algorithm was employed to

yield optimum conditions.
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a b s t r a c t

Batch and column phosphate removal was conducted by a commercially available nano-hydrated ferric
oxide composite HFO-201 under varying conditions, and the performance was modeled and predicted
with the aid of artificial neural network (ANN) model and response surface methodology (RSM). Initial
pH, sulfate concentration, operating temperature, and adsorbent dosage were chosen as four variables
for the batch study, while the removal efficiency was considered as the output. A central composite
design (CCD) was referred to design 33 sets of batch experiments, and a RSM model was developed to
compare with the ANN model. The three-layer feed-forward back-propagation network was established
in MATLAB to estimate the phosphate removal efficiency. The positive behavior of both models was ver-
ified by Pearson and Spearman coefficient and mean squared error (MSE). Analysis of variance (ANOVA)
tests and sensitivity analysis were performed on the models to find relative influence of four variables.
Temperature was deemed as the least influential whereas the other three variables were considered
significant to the output. Genetic Algorithm (GA) was employed to find optimum dosages for a desired
removal efficiency under given conditions. ANN modeling was further attempted to estimate the break-
through curves of fixed-bed adsorption, where pH, sulfate, temperature, flow rate (BV/h) and bed volume
was considered as variables. Predictions made by the developed models were in reasonably good agree-
ment with the test runs. This study suggested that ANN and RSM be considered as effective tools to model
and predict trace pollutants removal by nanocomposite adsorbents.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Environmental nanotechnology has attracted increasing inter-
est in water purification and remediation in recent years [1]. Till
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now a variety of nanomaterials has been reported to serve as cat-
alysts, membranes and adsorbents for water decontamination.
Such nanomaterials possess desirable properties not limited to
large specific surface area, high activity and microbial restraining
effect [2–4]. Recently, increasing studies have been performed to
remove toxins from aqueous systems such as toxic metals [5–9],
arsenic [10] and phosphate [11,12] by nanosized adsorbents. For
instance, arsenic and phosphate removal by nanosized hydrous
ferric oxide (HFO) have been extensively explored [13–15]. Never-
theless, most of the related references were based on laboratory
scale experiments, and application of nano-adsorbent in field
application has been scarcely reported. This is because direct use
of nanosized adsorbents faces unavoidable challenges such as
activity loss as a consequence of aggregation in aqueous solution
and costly separation [16]. Additionally, great concerns regarding
the potential environmental and health risks of released nanoma-
terials were also raised [17].

In response to the technical challenges of nanoparticle adsor-
bents for practical application, in the past decade, nanocomposite
adsorbents has been developed by immobilizing or encapsulating
target nanoparticles inside solid host of porous structure and large
size. The resultant nanocomposites combine high activity of target
nanoparticles for decontamination with readily separation and sat-
isfactory mechanical strength of the solid hosts, thus exhibiting
improved applicability and great potential in water treatment. Cur-
rently, some nanocomposite adsorbents are commercially avail-
able for field application in removal of arsenic, phosphate, and
toxic metals from water [18–22]. Particularly, these adsorbents
are capable of removing trace pollutants to meet the stringent
standard of water and wastewater with exceptionally high treat-
able volume. Several studies were also carried out in our group
using synthesized nanocomposite adsorbent to eliminate various
ionic pollutants from wastewaters [23–26]. For instance, a pat-
ented nanocomposite adsorbent HFO-201 has been proved to be
a specific phosphate adsorbent from bio-treated effluent [12,25].

As generally known, adsorption is usually conducted in the
form of fixed bed in practical application. The performance of an
adsorption process is a function of solution chemistry (pH, ionic
strength, temperature, other coexisting substances) and adsorbent
structure. Optimum operational design of an adsorption system
could be based on the experimental study involving all the above
factors, but it is a time consuming process. Comparatively, predic-
tion could help to allow maximum capacity of adsorbent in a much
simpler way. The conventional way to predict the adsorption pro-
cess is originated from deep understanding of adsorption mecha-
nisms. Some mechanistic models such as surface complexation
model and MUSIC model were developed to address on these is-
sues [27,28]. During the development of mechanistic models, the
unavoidable simplifications and assumptions would compensate
the lack of knowledge of some unrevealed mechanisms. Unluckily,
they could lead to inaccurate predictions [29,30]. In the past dec-
ade, alternative modeling tools such as response surface methodol-
ogy (RSM) and artificial neural networks (ANN) have received
increasing attentions and acceptance in the field of engineering
and process study [31–36]. Both empirical models or statistical
models take full advantage of the known data due to their inherent
ability to extract knowledge from operating conditions and repro-
duce complex relationships in engineering without knowing the
sophisticated underlying mechanism of the process [29,32]. RSM
model is known for its strength in understanding environmental
engineering process [37]. ANN was inspired by biological neurons
[38] and was derived from artificial intelligence (AI) research.
ANN can describe multivariate nonlinear problem well with
suitable amount of data and appropriate training algorithm ap-
plied, in a way, it mimics human learning behavior [32]. A number
of works using ANN as a modeling tool were reported in the field of

environmental engineering, including adsorption [39–41], AOPs
[42], bio-reaction [43,44] and electrocoagulation [45]. Several
papers took advantages of the genetic algorithm coupled with
ANN to generate optimum operating variables for the studied
process [45–47].

The objective of this study is to explore the potential of artificial
neural network and response surface methodology to model
phosphate removal from water by the nanocomposite adsorbent
HFO-201. We first employed response surface methodology
(RSM) and artificial neural network (ANN) to model the phosphate
removal characteristics of HFO-201 in batch experiments. Initial
pH, sulfate concentration (sulfate), temperature (temp) and dosage
of the adsorbent (dosage) were chosen as the variables, and the re-
moval efficiency was chosen as the target parameter. Afterwards,
ANN was used to describe the phosphate adsorption characteristic
in a fixed-bed column packed with HFO-201. The performance of
both models was evaluated and sensitivity analysis was conducted
to explore the relative importance of the variables. Then, genetic
algorithm combined with the ANN was employed to yield the
optimum conditions for desired removal efficiency. Additionally,
the individual and combined effect of the variables of concern
was analyzed on the basis of the established models.

2. Materials and methods

2.1. Materials

All the chemicals used in the study are of analytical grade from
Shanghai Reagent Station (Shanghai, China) and used without
further purification. The stock solution containing 100 mM ortho-
phosphate (in P) was prepared by dissolving KH2PO4 into de-ion-
ized water. The hybrid nanocomposite adsorbent HFO-201 was
obtained from Jiangsu NJU Environmental Technology Co., Ltd.
Essentially, HFO-201 comprises of two basic units, the host
poly(styrene–divinylbenzene) anion exchanger beads binding
R-N+ (CH3)3 groups, and the immobilized nanosized hydrated ferric
oxide therein of �10% Fe in mass. The BET surface area of HFO-201
is 27.5 m2/g and the average pore diameter is 20.3 nm [25]. Prior to
use, HFO-201 was subjected to cleanse with ethanol and de-
ionized water to remove any possible impurities.

2.2. Batch and column experiments

Batch adsorption experiments were carried out using a tradi-
tional bottle-point method to study the effect of solution pH
(3–11), temperature (20–40 �C), sulfate concentration (sulfate,
0–2.0 mM) and adsorbent dosage (dosage, 0.1–0.9 g/L) on the
removal efficiency of phosphate (initial concentration 0.1 mM).
Multiple experiments were conducted in 250 mL flasks containing
100 mL solution with different phosphate and sulfate levels.
Appropriate amount of 0.10 M HCl or NaOH solutions were used
for pH adjustment. After addition of the HFO-201 beads, the flasks
were sealed immediately, placed in the thermostatic shakers, and
shaken at preset agitation speed and temperature. The flasks were
shaken for 24 h to achieve equilibrium, as indicated by our early
study [25,48]. Then, the samples were filtered through 0.45-lm
syringe filter for phosphate determination. A number of small Pyr-
ex glass columns (12.0 mm in diameter and 130.0 mm in length)
were used to implement fixed-bed experiments. These columns
were equipped with a water bath to maintain a constant tempera-
ture. Five milliliter of HFO-201 was packed within the columns.
Ten-liter synthetic solutions with different phosphate and sulfate
levels and different pH values were applied as the feeding
solutions. The lange-850 variable speed peristaltic pumps were
employed to control the volumetric flow rate, and the feed
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