

Available online at www.sciencedirect.com

ScienceDirect

Journal of the European Ceramic Society 34 (2014) 1073–1081

www.elsevier.com/locate/jeurceramsoc

Pressureless sintering of boron carbide with Cr₃C₂ as sintering additive

Xiaoguang Li ^{a,b,*}, Dongliang Jiang ^a, Jingxian Zhang ^a, Qingling Lin ^a, Zhongming Chen ^a, Zhengren Huang ^a

a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050. China

^b Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Received 5 May 2013; received in revised form 12 November 2013; accepted 23 November 2013 Available online 23 December 2013

Abstract

In this study, chromium carbide (Cr_3C_2) was selected as the sintering additive for the densification of boron carbide (B_4C) . Cr_3C_2 can react with B_4C and form graphite and CrB_2 in situ, which is considered to be effective for the sintering of B_4C composites. The sintering behavior, microstructure development and mechanical properties of B_4C composites were studied. The density of B_4C composite increased with the increase of Cr_3C_2 content and sintering temperature. The formation of liquid phase could effectively improve the densification of B_4C composites. The abnormal grains began to appear at $2080\,^{\circ}C$. The bending strength could reach $440\,^{\circ}MPa$ for the $25\,^{\circ}Mt$ and $30\,^{\circ}Mt$ Cr_3C_2 samples after sintering at $2070\,^{\circ}C$. © $2013\,^{\circ}Elsevier\,^{\circ}Ltd$. All rights reserved.

Keywords: Boron carbide; Liquid phase sintering; Cr₃C₂

1. Introduction

B₄C is a covalently bonded compound with extremely high hardness (the third hardest material known after diamond and c-BN), relatively low density (2.52 g/cm³) and high neutron absorption cross section. Owing to its outstanding properties, it has been used as wear resistant linings such as sandblasting nozzles, lightweight armor for individual protection, and control rods in nuclear reactors, etc.^{1,2} However, the application of B₄C is restricted due to the difficulty in attaining high density B₄C ceramics. Nearly full dense B₄C ceramics have been routinely produced by hot pressing (HP) or hot isostatic pressing (HIP). But the application of the HP or HIP is limited due to the simple shaped, small sized and costly product. Compared with HP and HIP, pressureless sintering method is promising to fabricate B₄C ceramics with complex shape and large size at low cost.^{1,2}

At present, the sintering of pure B₄C to high density is difficult through pressureless sintering. Various kinds of sintering aids have been added to obtain high density product,

such as C, SiC, AlF₃, etc. ^{1–9} These sintering aids can obviously improve the properties of B₄C ceramics, though the additives usually increase the specific density. The best known additive, carbon, 2,3,10,11 is considered to enhance the densification by removing the negative species, boron oxide, on the B₄C surface at low temperature and forming the eutectic liquid phase at grain boundary at high temperature.^{2,11} Carbon has usually been introduced in the form of carbonaceous precursor (phenolic resin, ^{2,10} polysaccharide, ¹² etc.) or carbon black. ^{11,13} Carbon can also be provided through in situ reaction between B₄C and metal carbide additive. The densification and mechanical property can also be improved by simultaneously formed borides. Sigl et al.¹⁴ used titanium carbide (TiC) as sintering additive. The performance of B₄C was improved by in situ-formed TiB₂, but postsintering HIP was required to further enhance the densification. Other metal carbides additives also have been reported. 15 However, Cr₃C₂ has rarely been employed as sintering aid for pressureless sintering of B₄C.¹⁶

Due to the relatively low sintering temperature, liquid phase sintering is usually selected as an alternative route for the densification of boron carbide. High density B_4C ceramics had been prepared using Al or Al_2O_3 as additives 17,18 which was proposed to be able to form liquid phase and thus improve the densification through liquid phase sintering. Yamada et al. chose CrB_2 as

^{*} Corresponding author at: No. 1295, Dingxi Road, Changning District, Shanghai 200050, China. Tel.: +86 21 52412167; fax: +86 21 52413122. E-mail address: lixg@student.sic.ac.cn (X. Li).

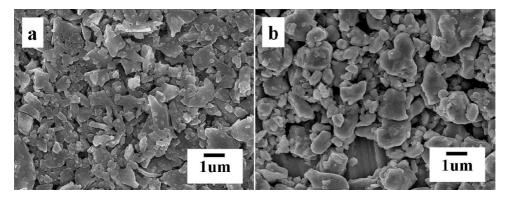


Fig. 1. Photographs of the B4C (a) and Cr3C2 (b) powder.

sintering aid and obtained high density B_4C , 19,20,21,22 which was also attributed to liquid phase sintering in the B_4C – CrB_2 system. Moreover, The Cr was found to be able to diffuse into the grains of B_4C , which may also contribute to the densification. 23

In this work, the sintering of B_4C ceramics using Cr_3C_2 as the sintering additive is studied. Slip casting was used to prepare green samples with homogeneous microstructure and high reliability. The sintering behavior and microstructure evolution of B_4C – Cr_3C_2 composites were investigated. The liquid phase formation in the B_4C – Cr_3C_2 system was also studied.

2. Experimental procedure

 B_4C powder (Dalian Jinma Group, China) with average particle size of 374 nm and specific surface area of $12.10\,m^2/g$ and Cr_3C_2 (Zhuzhou SanLi Carbide Material Co., LTD., China) powder with the particle size in the range of $1.0\text{--}1.5\,\mu m$ were used as starting materials. Fig. 1 shows the morphology of the B_4C and Cr_3C_2 powders. The B_4C particles are plate-like while the Cr_3C_2 particles are more spherical. The addition content of Cr_3C_2 was in the range of $5\text{--}30\,\text{wt}\%$ (based on the weight of B_4C).

In order to prepare well dispersed slurries, the B₄C powder was firstly treated using acid solutions. The purity of the B₄C powder could reach above 99% after treatment. The as-treated B₄C and Cr₃C₂ powder were dispersed and mixed in aqueous media using TMAH (Tetramethyl ammonium hydroxide, Analytical, Sinopharm Chemical Reagent Co., Ltd., China) as the dispersant and ball milled to achieve 50 vol.% slurries using SiC as milling media. After milling, the slurries were cast into plaster mold. The solidified green samples were removed from the mold and dried at 100 °C for 12 h. The as-dried green samples were then calcinated at 900 °C for 1 h in vacuum. Then, the sintering was conducted at the temperatures of 1200 °C, 2030 °C, 2050 °C, 2070 °C, 2080 °C, 2100 °C and 2150 °C respectively for 1 h with the heating rate of 10 °C/min in flow argon atmosphere. In order to study the shrinkage rates of samples with and without Cr₃C₂ as additives, the shrinkages of B₄C and B₄C + 10 wt% Cr₃C₂ were recorded using a Thermo-Optical-Measurement Automatic system (Tomac, Fraunhofer Institute for Silicate Research, Germany). The Tomac system was also

used to collect the video pictures of the sample to verify the liquid phase formation during sintering.

After sintering, the density of B₄C sample was measured using Archimedes's method. Phase components were identified using X-ray diffraction (XRD, D/max 2550 V, Rigaku, Japan). The microstructure of the sample was observed using a field emission scanning electron microscopy (FESEM, JSM-6700F, Hitachi, Japan) with an energy dispersive X-ray spectrometer (EDS, INCA, Oxford instruments, Britain) for chemical analysis. The chemical analysis was also carried out using an electron probe micro-analyzer (EPMA, JXA-8100, JEOL, Japan). The three-point flexural strength of the sintered sample was measured using a material testing system (Mold 5566, Instron Corp., UK) with the span width of 30 mm and the crosshead speed of 0.5 mm/min.

3. Result and discussion

3.1. Reactions and components of composites

$$2B_2O_3 + 6C = B_4C + 6CO (1)$$

$$1.5B_4C + Cr_3C_2 = 3CrB_2 + 3.5C$$
 (2)

XRD patterns show that the as-treated B_4C powder is mainly composed of B_4C , with a small amount of B_2O_3 and graphite

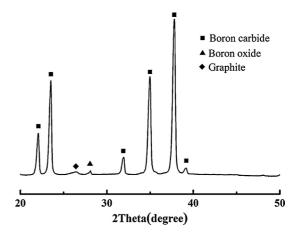


Fig. 2. XRD pattern of the as-treated B₄C powder.

Download English Version:

https://daneshyari.com/en/article/1474378

Download Persian Version:

https://daneshyari.com/article/1474378

<u>Daneshyari.com</u>