

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 34 (2014) 3607-3618

www.elsevier.com/locate/jeurceramsoc

Thermodynamic calculation for the chemical vapor deposition of silicon carbonitride

Jimei Xue, Xiaowei Yin*, Xiaofei Liu, Litong Zhang

Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, No. 127, West Youyi Rd., Xi'an 710072, Shaanxi, China

> Received 11 March 2014; received in revised form 7 May 2014; accepted 12 May 2014 Available online 2 June 2014

Abstract

In order to tailor the phase composition of silicon carbonitride (SiCN) by chemical vapor deposition or chemical vapor infiltration (CVD/CVI), it is necessary to set up a series of phase diagrams at a larger temperature range from 800 K to 1800 K using SiCl₄, NH₃, CH₄/C₃H₆ and H₂ as precursors. The equilibrium conditions of thermodynamic calculation were determined by temperatures, total pressures, dilute gas H₂ and molar ratios of reactants. CVD phase diagrams provide a qualitative description of phase composition, while the deposition efficiencies directly give the conversion extent from precursors to condensed phases. The low temperature phases (Si₃N₄, C) and high temperature phase (SiC) are also proved by thermodynamic calculation of CVD SiCN, which gives a clear way to conduct the experiments. © 2014 Elsevier Ltd. All rights reserved.

Keywords: Thermodynamic calculation; Chemical vapor deposition; SiCN ceramic; Phase diagram; Theoretical deposition efficiency

1. Introduction

Silicon carbonitride (SiCN) ceramic is a promising material with adjustable composition and excellent properties such as attractive mechanical properties, superior microwave absorption performance and good erosion resistances.^{1–4} Therefore, many works have focused on SiCN ceramic preparation for various applications.⁵ At present, the common preparation methods are CVD, PIP and sintering, but the strict parameters for CVD SiCN films, and poor density of PIP and sintering methods limit their applications. Therefore, it is desire to obtain a kind of dense and homogeneous SiCN substrates. Thermodynamic calculation helps one understand the influence factors and deposition mechanism of CVD process, and get the desired preparation methods of SiCN ceramics.

http://dx.doi.org/10.1016/j.jeurceramsoc.2014.05.023 0955-2219/© 2014 Elsevier Ltd. All rights reserved. Before setting up a CVD process, it is particularly useful to characterize the system by using a suitable computer program to calculate the equilibrium of gaseous species, liquids and condensed phases.^{7,8} Most of thermodynamic calculations have focused on PIP SiCN ceramics utilizing polymer precursors.^{9,10} However, thermodynamic calculations of CVD SiCN ceramics using SiCl₄/NH₃/CH₄/H₂ and SiCl₄/NH₃/C₃H₆/H₂ initial gases have focused on SiC–Si₃N₄ co-deposition,^{6,11} and only a few temperatures and dilution ratios of H₂/SiCl₄ have been studied by using CVD phase diagrams.

Until now, experiments are mainly on CVD SiCN films, which were prepared at low temperature and atmosphere.^{12,13} Kouakou et al.¹⁴ studied the role of silicon on the growth of SiCN film by using N₂/CH₄ gas mixture. Swain et al.¹⁵ showed that H₂ had an important influence on the structure and the forming of chemical bonding in SiCN film. It is obvious that the crucial conditions for CVD SiCN films are the deposition temperature, total pressure and molar ratio of the gas mixture. In order to obtain CVD SiCN ceramics with the expected phase composition and content, it is urgent to study both CVD phase diagrams and

^{*} Corresponding author. Tel: +86 13772099829. *E-mail address:* yinxw@nwpu.edu.cn (X. Yin).

Table 1	
The overall reactions in Si-C-N-H-Cl system	

Chemical reaction equations
$(1)3SiCl_4(l) + 4NH_3(g) \rightleftharpoons Si_3N_4(s) + 12HCl(g)$
$(2)SiCl_4(l) + CH_4(g) \rightleftharpoons SiC(s) + 4HCl(g)$
$(3)3SiCl_4(l) + C_3H_6(g) + 3H_2(g) \rightleftharpoons 3SiC(s) + 12HCl(g)$
$(4)CH_4(g) \rightarrow [C] + H_2(g) \rightleftharpoons C(s) + 2H_2(g)$
$(5)C_3H_6(g) \rightarrow [C] + H_2(g) \rightleftharpoons 3C(s) + 3H_2(g)$
$(6)\operatorname{SiCl}_4(g) \to [\operatorname{SiCl}_x] + [\operatorname{Cl}] \rightleftharpoons \operatorname{Si}(s) + 2\operatorname{Cl}_2(g)$

theoretical deposition efficiencies of condensed phases. Here, the deposition efficiency is more objective and straightforward for the experimental design.

In the present work, thermodynamic calculation of SiCN using Si-C-N-H-Cl system includes CVD phase diagrams as well as deposition efficiency diagrams, which is based on deep understanding of the relations among CVD parameters, thermochemistry properties of components, gas diffusion and mass transport theory.^{16,17} The purpose is to get the deposition mechanism of CVD process and preparation conditions of CVD SiCN substrate.

2. Method of calculation

Thermodynamic calculation is performed by using FactSage (Thermfact/CRCT and GTT-Technologies, Montreal, Canada and Herzogenrath, Germany). The input of the program requires atomic composition of the species, concentration of the initial species, the total pressure and temperature. The distribution of equilibrium species and their concentrations are based on the Gibbs free energy minimum principle. It was assumed that the reactions among the gas species come to a rapid equilibrium, forming molecules which represent the most stable distribution. This would be also suitable for metastable conditions where only the gas phase exists before deposition as well as for the more stable multiphase situations.¹⁸ The thermochemical data like standard enthalpy and standard entropy as a function of temperature was consist with the value of JANAF which has been reviewed.^{19–22} Hence, the overall chemical reactions and the possible products in Si-C-N-H-Cl system are listed in Tables 1 and 2, respectively, which are the basic principle of CVD process and are used to deduce the CVD mechanism.

Generally, the results are presented as CVD phase diagrams and deposition efficiencies diagrams as a function of temperatures and the molar ratios of input gases. The molar

Table 2		
Species considered	ed in Si-C-N-H-Cl syste	em.

	Equili	brium gas pha	ases		
HCl	SiCl ₄	SiH ₂ Cl ₂	SiHCl ₃	SiCl ₃	SiCl ₂
SiCH ₃ Cl ₃	SiCl	CH_4	HCN	CH ₃ Cl	C_2H_2
CH ₃ Cl	C_2H_6	CH ₂ Cl	CICN	CH ₃	NH ₃
Cl	N_2	NH_2	Cl_2	SiH ₄	SiH
Si ₂	Si_2N	Si ₂ C	SiC ₂	SiN	
	Equilibriu	m condensed	phases		
Si_3N_4	Ċ		•		
	HCl SiCH ₃ Cl ₃ CH ₃ Cl Cl Si ₂ Si ₃ N ₄	Equili0 HCl SiCl4 SiCH3Cl3 SiCl CH3Cl C2H6 Cl N2 Si2 Si2N Equilibriu Si3N4	$\begin{array}{c c} & Equilibrium gas pha \\ HCl & SiCl_4 & SiH_2Cl_2 \\ SiCH_3Cl_3 & SiCl & CH_4 \\ CH_3Cl & C_2H_6 & CH_2Cl \\ Cl & N_2 & NH_2 \\ Si_2 & Si_2N & Si_2C \\ \hline \\ Equilibrium condensed \\ Si_3N_4 & C \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c } \hline Equilibrium gas phases \\ HCl & SiCl_4 & SiH_2Cl_2 & SiHCl_3 & SiCl_3 \\ SiCH_3Cl_3 & SiCl & CH_4 & HCN & CH_3Cl \\ CH_3Cl & C_2H_6 & CH_2Cl & ClCN & CH_3 \\ Cl & N_2 & NH_2 & Cl_2 & SiH_4 \\ Si_2 & Si_2N & Si_2C & SiC_2 & SiN \\ \hline Equilibrium condensed phases \\ Si_3N_4 & C & \end{tabular}$

ratios of reactants are defined as $\delta = [CH_4]_0/[CH_4 + NH_3]_0$ (or $\delta = [C_3H_6]_0/[C_3H_6 + NH_3]_0$), $\gamma = [SiCl_4]_0/[CH_4 + NH_3]_0$ (or $\gamma = [SiCl_4]_0/[C_3H_6 + NH_3]_0$), here the amount of CH₄ + NH₃ (or C₃H₆ + NH₃) is fixed. The values of γ , the system pressure, and the concentration of dilute gas are variable in Si-C-N-H-Cl system. Because of interest in the atmospheric pressure CVD and lower pressure CVD (LPCVD), a wide range of total pressures was studied. Argon used as dilution gas is presented in constant abundance to the rest of the input gases.

3. Experimental

The SiCN ceramic was prepared by CVD on the porous Si₃N₄ ceramic. Porous Si₃N₄ ceramics with porosity of 42% and density of 1.9 g/cm³ were used as precursors. The fabrication detail of porous Si₃N₄ ceramic was given elsewhere.²⁴ The porous Si₃N₄ ceramic was machined into specimens and then ultrasonically cleaned in ethanol absolute and dried in air. The specimens were made available for CVD reactor to deposit SiCN ceramic from silicon tetrachloride (SiCl₄ \geq 99.99 wt.%), ammonia (NH₃ \geq 99.99%) propylene (C₃H₆ \geq 99.99%) and methane $(CH_4 \ge 99.99\%)$. SiCl₄ was carried into the reaction chamber by bubbling hydrogen (H₂ \geq 99.999%) gas. Argon (Ar \geq 99.9%) was used as dilution gas to keep the total pressure. A typical processing parameter was chose according to the thermodynamic diagram, in which T=1273 K, $\gamma=1.5$, $\delta=0.6$ and the dilution ratio of 10 for 7 h at 0.01 atm were used for ternary co-deposition ceramics. Morphology of CVD SiCN ceramic was examined by SEM (S-4700, Hitachi, Tokyo, Japan). The element of the local area in the SiCN ceramic was analyzed by EDS (Genesis XM2, EDAX, USA). The as-prepared SiCN-Si₃N₄ ceramics were then annealed at 1773 K in N₂ for 2h. Phase distribution was identified by TEM (G-20, FEI-Tecnai, Hillsboro, USA) and phase crystallization analysis were conducted by XRD (X'Pert Pro, Philips, Netherlands).

4. Results and discussions

4.1. The CVD phase diagrams in the Si-C-N-H-Cl system with various γ

The previous experiments and thermodynamic calculations^{6,11,14} show that the concentration of SiCl₄ in the system has an important influence on the deposition of both SiC and Si₃N₄, since Si atom is the main component of SiCN ceramics.

CVD phase diagrams of the Si-C-N-H-Cl system at 0.01 atm with variable γ are shown in Figs. 1 and 2. A small Si + SiC co-deposition region appears at higher temperature, when insufficient SiCl₄ is added to the system. Fischman et al. and Kingon et al.^{18–23} studied the phase diagrams of SiC, in which C + SiC phase is deposited with excessive carbon amount, while Si + SiC phase is deposited with abundant silicon content. This seems to be inconsistent with the phase diagrams in this paper, because the phase compositions in this paper are more complicated, and the maximum deposition temperature of all the phases regions decreases with the increase of γ . Thermodynamic calculations of Download English Version:

https://daneshyari.com/en/article/1474440

Download Persian Version:

https://daneshyari.com/article/1474440

Daneshyari.com